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Abstract If A caused B and B caused C, did A cause C? Although layper-
sons commonly perceive causality as being transitive, some philosophers have
questioned this assumption, and models of causality in artificial intelligence are
often agnostic with respect to transitivity: They define causation, then check
whether the definition makes all, or only some, causal arguments transitive.
We consider two formal models of causation that differ in the way they repre-
sent uncertainty. The quantitative model uses a crude probabilistic definition,
arguably the common core of more sophisticated quantitative definitions; the
qualitative model uses a definition based on nonmonotonic consequence rela-
tions. Different sufficient conditions for the transitivity of causation are laid
bare by the two models: The Markov condition on events for the quantitative
model, and a Saliency condition (A is perceived as a typical cause of B) for
the qualitative model. We explore the formal and empirical relations between
these sufficient conditions, and between the underlying definitions of perceived
causation. These connections shed light on the range of applicability of each
model. They lead to some speculations about commonsense causal reasoning
(which would follow a qualitative model), contrasted with scientific causation
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(which would follow a quantitative model). These speculations are supported
by a series of three behavioral experiments.

Keywords Causality · Transitivity · Uncertainty · Cognitive Validity

1 Introduction

Making yourself some tea, you put your kettle on the stove. Moments later,
the kettle whistles because the water is boiling. The water is boiling because it
has been heated to 100 degrees. Is the kettle whistling because the water has
been heated to 100 degrees? Most of us agree that it is the case. The kettle
example is one where it seems natural to accept that ‘A causes C’ results from
‘A causes B’ and ‘B causes C.’ That is, it makes causal transitivity appear
unproblematic.

Although it has always been a strong temptation for laypersons to consider
that causality on events is necessarily a transitive relation, philosophers have
debated about that assumption. Earlier instances of such a discussion can
be found in [32,40,41]. E. J. Lowe [40] observed that some transitive causal
conclusions were odd, citing as an example the well-known nursery rhyme:

For want of a nail the shoe was lost,
For want of a shoe the horse was lost,
For want of a horse the rider was lost,
For want of a rider the battle was lost,
For want of a battle the kingdom was lost,
And all for the want of a horseshoe nail.

Lowe noted that the transitive conclusion that the want of a nail caused
the loss of a kingdom was unplausible, while all the intermediate causal rela-
tions were, or could be made, acceptable. J. L. Mackie [41] objected that the
transitive conclusion was perfectly acceptable if one interpreted it as meaning
that the want of a nail was a partial cause of the loss of a kingdom, even
though it was not a subtantial causal contribution. Mackie however conceded
that causation might be intransitive if one required the expressed cause to
play a substantial role in the production of the effect. Relatedly, G. Hesslow
[32] suggested that intransitivity in this example might concern explanation
rather than causation itself. That is, that although the transitive causal con-
clusion was in fact correct, it sounded odd because the want of a nail had weak
explanatory relevance in regard to the loss of a kingdom.

More recently, many more examples of intransitive causal arguments were
discussed in the field of philosophy [9,30,33,35], strongly suggesting to let go of
the constraint that causation should be unconditionally transitive. Although
we will not focus our analyses on these examples, we give two of them here as
an illustration:

A man’s finger is severed in a factory accident. He is rushed to the hospital, where
an expert surgeon reattaches the finger, doing such a splendid job that a year later,
it functions as well as if the accident had never happened. The accident causes the
surgery, which, in turn, causes the finger to be in a healthy state a year later. But,
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intuitively, the accident does not cause the finger to be in a healthy state a year
later [35].

An assassin plants a bomb under my desk. I find it, and safely remove it. His planting
the bomb causes my finding it, which, in turn, causes my continued survival. But,
intuitively, his planting it does not cause my continued survival [30].

Note that in the first example where transitivity sounds counterintuitive,
there is a notion of intervention [44] that breaks transitivity : the surgery is
a voluntary act that stops the potential consequences of the finger accident.
In the second example, planting the bomb sounds more of a prerequisite for
finding it than an actual cause.

In the field of Artificial Intelligence, there has been no strong stance as to
whether causation should be transitive (for exceptions, see e.g., [4]). Indeed,
models of causality in artificial intelligence such as [31] often take an agnostic
stance with respect to transitivity, by defining causation first and then checking
whether the definition makes all, or only some, causal arguments transitive. For
example, Pearl [44] explains (p. 237) that the transitivity of causation becomes
natural if it is understood in terms of indirect influence under a Markovian
condition: if A causes B, B causes C regardless of A, then A is understood
as causing (indirectly) C. We will indeed have more to say on the connection
between transitivity and the Markov condition.

In this article, we consider two models of uncertain causation that differ in
the way they represent uncertainty. The first model uses a basic probabilistic
definition of ‘A causes B’ as Pr(B|A) > Pr(B), or equivalently Pr(B | A) >
Pr(B | Ā), originally discussed by Good [28,29]. Quite uncontroversially, this
definition is too crude, especially from a normative perspective. For example,
it would certainly be inadvisable to use this definition to extract causal rela-
tions from a body of scientific data. Various augmentations of this definition
have accordingly been proposed, most notably by Pearl [44]. We will, how-
ever, limit ourselves in this article to this crude definition. Our motivation
is twofold. First, our purpose is not to investigate a model of how scientists
or other professionals should judge causation, but rather to investigate how
laypersons might perceive causation. As it turns out, the crude probabilistic
definition above provides the basis for one major psychological theory of how
laypersons perceive causation [15–17]. Second, we find it advantageous to limit
ourselves to the common core of contemporary, more sophisticated probabilis-
tic definitions of causation. Using a richer definition would amount to limiting
our analysis to a single probabilistic model of causation. Because all these more
sophisticated definitions at least share the idea that Pr(B | A) > Pr(B | Ā)
when A causes B, we can hope that the conclusions we will reach using this
basic idea will have some degree of generality across the various, current prob-
abilistic models of causation.

The second model we will investigate, and that we recently proposed, uses a
qualitative representation of uncertainty, based on nonmonotonic consequence
relations. As we will see, sufficient conditions for the transitivity of causation
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laid bare by these two models are different.1 The quantitative model predicts
that causation is transitive as soon as the causal chain is Markovian; and the
qualitative model predicts that causation is transitive as soon as the first event
in the chain is a salient, normal cause of the middle event. The question then
arises of whether the two transitivity conditions are formally related at all;
and if so, whether their formal links reflect formal relationships between the
two underlying definitions of causation. To answer these questions, we need
to:

1. Adapt the Markov condition to a qualitative setting;
(a) check whether it is a sufficient condition for causal transitivity, in the

qualitative sense;
(b) check whether it is distinct from, stronger than, or weaker than the

Saliency condition;
2. Adapt the Saliency condition to a quantitative setting;

(a) check whether it is a sufficient condition for causal transitivity, in the
quantitative sense;

(b) check whether it is distinct from, stronger than, or weaker than the
Markov condition;

3. Compare the notions of causality captured by the qualitative and quanti-
tative conditions; in particular, we will:
(a) Translate the qualitative definition into a probabilistic setting, and

check whether it is stronger or weaker than the standard definition;
(b) investigate the transitivity conditions of this translated definition.

We eventually point out a gap between the concepts of causation captured
by each framework, which may explain the disagreement between them despite
the fact that the qualitative framework can be viewed as a mathematical limit
of the quantitative one, in terms of extreme, non-standard probabilities [1,43,
38]. We speculate that the qualitative framework is apt to describe everyday
causal thinking by laypersons, and that laypersons are more likely to test for
Saliency than to test for the Markov condition when they assess the transi-
tivity of causal arguments. We conclude the article by experimental evidence
supporting this conjecture: In three behavioral experiments, we observe that
judgments of causal transitivity are predicted by Saliency rather than by the
Markov condition.2

2 The Quantitative Markov Condition

In this paper, A,B,C, . . . denote events, understood as subsets of situations,
exactly one of which occurs. Then, A ∪ B denotes the union of such sets

1 Let us note that these quantitative and qualitative frameworks are both eligible for
predicting judgments of causality from reported sequences of events, as discussed in [5]. In
particular, their implementation does not raise significant problems from a computational
point of view, and is not discussed any further in this article.

2 This article is an extended version of the preliminary conference paper [12].
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Table 1 A Counterexample to the transitivity of probabilistic causation when Pr(C|AB) =
Pr(C|B).

Ā A

B̄ B B̄ B

C̄ 2 4 3 4
C 3 4 0 4

expressing the disjunction of events, and their conjunction, usually denoted
as a set-intersection A ∩ B is shortened into AB for simplicity. The standard
definition of causation, from a probabilistic perspective, is that the presence of
the cause increases the probability of the effect. That is, ‘A causes B’ (where
A, B, are events, not variables) if and only if Pr(B|A) > Pr(B|Ā). Note that
this expression precludes the cases where either Pr(A) or Pr(B) is equal to 0 or
1, and that it can also be written Pr(B|A) > Pr(B). Note also that, although it
can be written in a symmetrical way expressing positive correlation, Pr(AB) >
Pr(A) Pr(B), we will maintain the tradition of calling A and B the the ‘cause’
and the ‘effect,’ respectively (provided that the cause temporally precedes the
effect). Note that Good’s definition implies that Pr(A) > 0,Pr(B) > 0, i.e. the
probability of events such that Pr(B|A) > Pr(B) are necessarily positive.

Causation in the crude probabilistic sense is not necessarily transitive. The
fact that Pr(B|A) > Pr(B|Ā), i.e., ‘A causes B’, together with the fact that
Pr(C|B) > Pr(C|B̄), i.e., ‘B causes C’, do not always imply that Pr(C|A) >
Pr(C|Ā), i.e., ‘A causes C.’ A detailed counterexample is presented later on
(see Table 1; all tables display integer numbers, corresponding to the number
of observations in each cell).

Probabilistic causation, however, is transitive as soon as the two following
conditions are jointly satisfied:

Pr(C|AB) = Pr(C|B) (1)

Pr(C|AB̄) = Pr(C|B̄) (2)

Conditions (1) and (2) are the two parts of the Markov condition on events.
They express that C is independent of A in the context of B, and in the
context of B̄, respectively. In the following, we will speak of the ‘positive’ and
‘negative’ parts of the Markov condition on events, respectively. Note that this
fine-grained decomposition of the Markov condition is possible because our
analysis focuses on the relationships between specific values of the variables,
rather than on the overall relation between the variables. This fine-grained
level of analysis is essential to the results we will provide in this paper.

Remark 1 Both parts are covered by the symmetric expression of the Markov
condition Pr(abc) Pr(b) = Pr(ab) Pr(bc), for Boolean variables a, b, c having
values A, Ā, etc. This symmetric expression allows for Pr(b) = 0, which is
not the case for the conditional, asymmetric formulation, using Kolmogorov
conditional probabilities.
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Table 2 Postulates and characteristic properties of System P.

PREMISE 1 PREMISE 2 CONCLUSION

right weakening E |∼ F F ⊆ G E |∼ G
and E |∼ F E |∼ G E |∼ FG
or E |∼ G F |∼ G E ∪ F |∼ G
cautious monotony E |∼ F E |∼ G EF |∼ G
cut E |∼ F EF |∼ G E |∼ G

Proposition 1 If the two parts of the Markov condition on events are satis-
fied, then it follows from Pr(B|A) > Pr(B|Ā) and Pr(C|B) > Pr(C|B̄) that
Pr(C|A) > Pr(C|Ā).

Proof First, Pr(C|A) = Pr(C|AB) Pr(B|A) + Pr(C|AB̄)(1− Pr(B|A));
Likewise, Pr(C|Ā) = Pr(C|ĀB) Pr(B|Ā) + Pr(C|ĀB̄)(1− Pr(B|Ā)).
From (1), Pr(C|AB) = Pr(C|ĀB) = Pr(C|B);
From (2), Pr(C|AB̄) = Pr(C|ĀB̄) = Pr(C|B̄).
Hence: Pr(C|A)− Pr(C|Ā) = Pr(C|B) Pr(B|A) + Pr(C|B̄) Pr(B|A)

-
(

Pr(C|B) Pr(B|Ā) + Pr(C|B̄) Pr(B|Ā)
)

= (Pr(C|B)− Pr(C|B̄))(Pr(B|A)− Pr(B|Ā)).
This quantity is strictly positive from the definitions of ‘A causes B’ and

‘B causes C.’ ut

Remark 2 This proof is inspired from Eells and Sober [25], who studied the
transitivity of their own version of probabilistic causation.

It will be relevant later on to note that (1) alone is not sufficient to ensure
transitivity. Table 1 presents an example where A causes B and B causes C,
in the probabilistic sense 3 Pr(B|A) = 8/11 is greater than Pr(B) = 16/24,
and Pr(C|B) = 8/16 is greater than Pr(C) = 11/24. Furthermore, the positive
part (1) of the Markov condition on events is satisfied since Pr(C|BA) = 4/8 =
Pr(C|BĀ). However, A cannot be said to cause C, since Pr(C|A) = 4/11 is
less than Pr(C) = 11/24. As it can be expected, the negative part (2) of the
Markov condition on events is not satisfied, since Pr(C|B̄A) = 0 is different
from Pr(C|B̄Ā) = 3/5.

3 A Qualitative Saliency Condition

Because probabilistic information is not always available for causal inference,
Bonnefon and colleagues [5,10,11] offered a qualitative counterpart to proba-
bilistic conceptions of causality. This framework takes advantage of so-called
nonmonotonic consequence relations, which make it possible to express that
the occurrence of B is generally, normally a consequence of the occurrence of

3 Note that in Table 2, probabilities Pr(A),Pr(B),Pr(C) are positive; it will be so in all
subsequent examples of the same vein.
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A, but that exceptional situations may arise—without the need for specifying
how frequent these exceptions are.

Formally, the relation ‘If A is true then normally B is true’ is written A |∼
B, read A ‘snake’ B. The snake operator follows the requirements of System
P for nonmonotonic reasoning [34]. That is, |∼ is reflexive and satisfies the
postulates and properties summarized in Table 2. Empirical studies repeatedly
demonstrated that the postulates of System P provide an adequate description
of the way human reasoners handle exception-laden rules [6,18,45].

Based on this representation of background knowledge, perceived causation
is defined in the following terms: an event A is perceived to cause another event
B in a context K if B was false before A took place (which was normal in
context K), and became true afterwards (B is normal as well in context KA):

Definition 1 An agent “perceives thatAt1 causedBt2 in contextK” (denoted
At1 BK Bt2), if and only if:

– the agent knows of a sequence ¬Bt1, At1, Bt2 ; where t2 > t1 ; t1 and t2 are
the first time points when A and B, respectively, are known to be true by
the agent ; and K (the context) is the conjunction of all other facts known
by the agent at time t1.

– the agent possesses the pieces of default knowledge that K |∼ ¬B and
AK |∼ B.

In the remainder of this article, At1 BK Bt2 will be abridged as A BK B,
only when there is no risk of ambiguity about the context or the time points.
Likewise, AK |∼ B will be shortened as A |∼K B when appropriate.

This definition of causality is closely related to an asymmetric notion of
qualitative independence introduced by Dubois et al. [21] in the setting of pos-
sibility theory. It has a number of formal properties that are explored in [11].
Especially relevant to our current purpose is the fact that perceived causality
defined in this way is not generally transitive: it is not always possible to infer
At1 BK Ct3 from At1 BK Bt2 and Bt2 BK Ct3 (where t3 > t2 > t1, and K is
taken at t1). However :

Proposition 2 If At1 BK Bt2, Bt2 BK Ct3, and , then At1 BK Ct3.

Proof

– B |∼K C holds from the definition of Bt2 BK Ct3. Together with B |∼K A,
it gives (by Cautious Monotony) AB |∼K C. This together with A |∼K B
(from the definition of At1 BK Bt2) gives (by Cut) A |∼K C.

– K |∼ ¬C follows directly from the definition of Bt2 BK Ct3.
– Trivially, t3 > t1 ; and t1, t3 are the first time points where A and C,

respectively, were known to be true.
ut

We will henceforth call B |∼K A the Saliency condition.
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Indeed, this condition means that observing B in context K normally leads
one to expect that A has occurred. In other terms, A is a very salient cause
of B, so salient that it is normally the explanation that one will imagine, by
default, to explain the occurrence of B.

4 A Qualitative Markov Condition

In this section, we focus on the qualitative framework by (a) exploring the
links between the qualitative Saliency condition and a qualitative rendition of
the Markov condition; and (b) exploring the links between this qualitative ren-
dition and the transitivity of qualitative causation. One qualitative rendition
of (1) and (2) is:

AB |∼K C if and only if B |∼K C (3)

AB̄ |∼K C if and only if B̄ |∼k C (4)

This definition encodes the idea that knowing or ignoring the presence of
A is irrelevant to the agent’s belief in C in the presence of B, and in the
presence of its contrary B̄. The qualitative Saliency condition implies half of
the qualitative Markov condition. More precisely, the Saliency condition (2)
implies the positive part (3) but not the negative part (4).

Proposition 3 If B |∼K A, then AB |∼K C if and only if B |∼K C.

Proof The proof simply uses cut on B |∼K A and AB |∼K C for ⇒, and
cautious monotony on B |∼K A and B |∼K C for ⇐. ut

However, the saliency condition B |∼K A does not imply the negative part
of the Markov condition. It is possible to have ABK B,BBK C and B |∼K A
without having AB̄ |∼K C equivalent to B̄ |∼K C. For example, it may be
that both B |∼K A and B̄ |∼K Ā hold; but accepting B̄ |∼K Ā stops the
derivation of AB̄ |∼K C from B̄ |∼K C (cautious monotony does not apply).
In a qualitative setting, the Saliency condition does not necessarily imply the
negative part of the Markov condition on events.

Remark 3 Note that (4) could easily be derived from B̄ |∼K A. However, if
both B |∼K A and B̄ |∼K A hold, then (by or) (KB) ∪ (KB̄) |∼ A, and
ultimately K |∼ A. As shown in [11], the fact that K |∼ A precludes that
ABKB for any B: In the qualitative model, normal events cannot be perceived
as causes of abnormal events. Thus, adding the condition B̄ |∼K A to B |∼K A
would allow to derive (3) and (4) instead of just (3), but would at the same
time defeat the whole point of reasoning about causes.

Remarkably, and contrary to the quantitative case, the positive part of the
qualitative Markov condition is sufficient to give transitivity.

Proposition 4 If KA |∼ B and KB |∼ C, then KA |∼ C, provided that
(KAB |∼ C if and only if KB |∼ C).
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Proof From KB |∼ C and (KAB |∼ C if and only if KB |∼ C), we get
KAB |∼ C. From this relation and KA |∼ B we arrive at KA |∼ C by
applying cut. ut

Corollary 1 If At1BKBt2, Bt2BKCt3, and (KAB |∼ C if and only if KB |∼
C), then At1 BK Ct3.

Proof – KA |∼ C is given by Proposition 4.
– K |∼ ¬C follows directly from Bt2 BK Ct3.
– Trivially, t3 > t1 ; and t1, t3 are the first time points where A and C,

respectively, were known to be true.
ut

Nevertheless, it can be checked that the positive part of the qualitative
Markov condition does not imply the Saliency condition. To show this, we use
a model of System P where the former holds but not the latter. Consider a
qualitative possibility distribution induced by the well-ordered partition [8]:
(ĀB̄C̄, C, (A ∪ B) \ C). Namely ∀s 6∈ A ∪ B ∪ C, π(s) = 1; ∀s ∈ C, π(s) = α;
∀s ∈ (A ∪B) \ C, π(s) = β, with 1 > α > β. Translating A |∼ B as Π(AB) >
Π(AB̄), where Π(A) = maxs∈A π(s) it is easy to check that:

– |∼ B̄ and |∼ C̄ since Π(B) < 1 and Π(C) < 1
– A |∼ B,B |∼ C since Π(AB) = Π(BC) = α, assuming ABC 6= ∅; assum-

ing AB̄C = ∅, Π(AB̄) = Π(BC̄) = β
– AB |∼ C since Π(ABC) = α > Π(ABC̄) = β
– Assuming that ĀBC 6= ∅, B |∼ A does not hold since Π(ĀB) = α =
Π(AB).

It may seem surprising that, in the qualitative setting, the positive part
of the Markov condition is sufficient for transitivity, although it is weaker
than the Saliency condition. We can explain this by exploiting the natural
connection between conditional assertions of the form A |∼ B and conditional
probabilities Pr(B | A). Indeed, A |∼ B can be formally interpreted as a pair
of events of the form (AB,AB̄), and the logic of conditional assertions has a
three-valued semantics based on this representation [24]. Pr(B | A) is entirely
determined by Pr(AB) and Pr(AB̄), and there is a closely related semantics
of conditional assertions, whereby the statement of A |∼ B comes down to an
infinitesimal probability statement:

A |∼ B ⇐⇒ Pr(B | A) > 1−O(ε),

where ε is a positive number arbitrarily close to 0, and O(ε) stands for any
function that vanishes with ε. Inferring A |∼ B from a set of conditionals comes
down to proving that the corresponding infinitesimal probability statements
imply that Pr(B | A) > 1−O(ε), i.e. that when the corresponding probabilities
get arbitrarily close to 1, so does the probability Pr(B | A). The properties of
reasoning with such extreme probability statements were studied in [1,43,38]
and turned out to be the properties of nonmonotonic reasoning laid bare in
System P. In fact, the calculus of infinitesimal conditional probabilities of this
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form is equivalent to System P [38,7]. And degraded forms of inference rules
of System P hold with standard conditional probabilities [23,26,37].

Now, it is clear that BBC reads Pr(C | B) > 1−O(ε) and Pr(C) < O(ε).
Hence:

– From ABB and BBC we get Pr(AB) > (1−O(ε)) Pr(A) and Pr(BC) >
(1−O(ε)) Pr(B); it yields:

– Pr(AB) Pr(BC) > (1−O(ε)) Pr(A) Pr(B).
– This result, along with the positive Markov condition, yields: Pr(ABC) Pr(B) >

(1−O(ε)) Pr(A) Pr(B).
– Simplifying by Pr(B): Pr(AC) ≥ Pr(ABC) > (1 − O(ε)) Pr(A). Hence
AB C.

Remark 4 The above setting for plausible inference has been challenged on the
ground that it conflicts with the idea of acceptance viewed as high probability:
if in a given context Pr(A) and Pr(B) are close to 1, then it does not imply that
Pr(AB) is close to 1 at all. It questions the deductive closure of accepted beliefs
[47,37]. This is the basis of the lottery paradox of Kyburg [36] (buying a lottery
ticket that loses is very likely, but one is sure that there is at least one win-
ner). It explains why Adams, and more recently Pearl, Lehmann and colleagues
resort to infinitesimal probabilities to justify the plausible inference rules of
system P (Pr(AB) ≥ 1 − 2O(ε) if Pr(A) ≥ 1 − O(ε) and Pr(B) ≥ 1 − O(ε).
However, Benferhat et al.[8], have laid bare a non-infinitesimal probabilistic
semantics of system P, interpreting conditionals as constraints on so-called
big-stepped probabilities (which form super-increasing sequences of numbers
p1 > p2... > pn ∈ [0, 1] such that ∀i = 1, . . . , n, pi >

∑
j=i+1,...,n pj). Notice-

ably, the set of accepted propositions in the sense of a big-stepped probabil-
ity is deductively closed in any context. As explained at length in [20], such
probabilities are immune to the lottery paradox. Moreover, it is stressed that
situations were non-monotonic reasoning makes sense (jumping to conclusions
and reasoning with them in standard logic) is when some situations are promi-
nently more likely than others (as expressed by big-stepped probabilities), not
when mere chance and pure randomness prevail (as in the lottery paradox
example, where all tickets sold are equally likely).

5 A Quantitative Saliency Condition

In this section, we focus on the quantitative case by (a) exploring the links
between the quantitative Markov condition and a quantitative rendition of
the Saliency condition; and (b) exploring the links between this quantitative
rendition and the transitivity of quantitative causation. In agreement with the
broadest probabilistic understanding of |∼, we use the following quantitative
rendition of the Saliency condition (2):

1 ≥ Pr(A | B) ≥ k > 0.5. (5)
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Table 3 A Counterexample to Pr(C | AB̄) = Pr(C | B̄) where Pr(A | B) = 1.

Ā A

B̄ B B̄ B

C̄ 4 0 1 1
C 2 0 1 1

Table 4 A Counterexample to transitivity where Pr(A | B) = 1.

Ā A

B̄ B B̄ B

C̄ 8 0 4 0
C 6 0 1 1

for some appropriate value of the threshold k. We first consider the limit case
where k = 1. As we will see, this limit case is already informative enough; we
will only briefly consider the general case where 0.5 < k < 1.

The fact that k = 1 in (5), i.e., that Pr(A | B) = 1, implies the positive
part of the quantitative Markov condition. More precisely, Pr(A | B) = 1
implies (1) but not (2).

Proposition 5 If Pr(A | B) = 1 then Pr(C|AB) = Pr(C|B).

Proof Pr(A | B) = 1 implies Pr(ĀB) = 0, and therefore both Pr(AB) = Pr(B)
and Pr(ABC) = Pr(BC). Therefore, Pr(ABC) Pr(B) = Pr(AB) Pr(BC),
which gives (1). ut

Just as in the qualitative case, the positive part of the Markov condition
does not imply the qualitative Saliency condition, (1) does not imply Pr(A |
B) = 1. See again Table 1 for a counterexample. Pr(A | B) = 1 is thus
a stronger condition than the positive part (1) of the Markov condition on
events. However, no such relation exists between Pr(A | B) = 1 and the
negative part of the Markov condition on events: Pr(A | B) = 1 does not
imply (2). Table 3 displays a simple counterexample where Pr(A | B) = 1 but
Pr(C | AB̄) = 1/2 is different from Pr(C | B̄) = 3/8.

Neither does Pr(A | B) = 1 imply transitivity. Table 4 displays an example
where A causes B and B causes C, in the probabilistic sense: Pr(B | A) = 1/6
is greater than Pr(B) = 1/20, and Pr(C | B) = 1 is greater than Pr(C) =
8/20. Furthermore, Pr(A | B) = 1. But A cannot be said to cause C, as
Pr(C | A) = 2/6 is lower than Pr(C) = 8/20. Unsurprisingly, the negative
Markov condition is not satisfied, since Pr(C | B̄A) = 1/5 is different from
Pr(C | B̄Ā) = 6/14.

We have considered so far the limit case where KB |∼ A is translated
as Pr(A | B) = 1, which is the strongest possible rendering of the Saliency
condition. Even in this limit case, causation is not necessarily transitive, since
Pr(C | A) is not necessarily greater than Pr(C) when Pr(C | B) > Pr(C) and
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Pr(B | A) > Pr(B). Now, it can be shown that the optimal lower bound of
Pr(C | A) is an increasing function of the threshold k with Pr(A | B) ≥ k.

Indeed, as shown in [22], the optimal lower bound of Pr(C | A) can be
written as:

Pr(C | A) ≥ Pr(B | A) ·max

(
0, 1− 1− Pr(C | B)

Pr(A | B)

)
(6)

It is easily checked from (6) that the optimal lower bound of Pr(C | A) in-
creases with Pr(A | B), and is thus an increasing function of threshold k.
Therefore, all other probabilities being equal, if it is not guaranteed that
Pr(C | A) > Pr(C) when Pr(A | B) = 1, then it cannot be guaranteed either
that Pr(C | A) > Pr(C) for any value of k > 0.5. However, if saliency holds
as Pr(A | B) = 1, a degraded form of transitivity of conditional probability
holds as Pr(C | A) ≥ Pr(B | A) Pr(C | B).

6 Two models of causation or two notions of causation?

In summary, the following results have been obtained. In the qualitative set-
ting, using the nonmonotonic Definition 1 of causation, the positive Markov
condition on events is sufficient for transitivity to hold: there is no need for
the negative Markov condition to hold. Because the Saliency condition implies
the positive part of the Markov condition (albeit not its negative part), it is
itself a sufficient condition for transitivity.

In the quantitative setting, using the probabilistic definition of causation
as Pr(B | A) > Pr(B), the positive Markov condition on events alone (without
the negative part) is not a sufficient condition for transitivity. In this setting,
the Saliency condition implies the positive part of the Markov condition, but
not its negative part; and it is not itself a sufficient condition for transitivity.
In this section, we consider whether or not the pattern of results obtained for
the transitivity conditions is a consequence of formal relations between the
underlying definitions of causation in the two models.

6.1 Two views of causation

The connection between nonmonotonic inference and conditional probability,
as recalled above, clarifies the difference between probabilistic causality de-
veloped after [28], and nonmonotonic causality. The nonmonotonic definition,
couched in probabilistic terms, comes down to the following requirements: A
causes B if and only if B is little probable per se and very probable in the
context where A is true. The weakest quantitative rendition of this definition
is:

Pr(B) < Pr(B̄) and Pr(B | A) > Pr(B̄ | A). (7)
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Remark 5 Note that this definition of causation is genuinely asymmetric, con-
trary to the standard probabilistic definition that amounts to a positive cor-
relation between events.

This weakest rendition already implies Pr(B | A) > Pr(B) since (7) im-
plies Pr(B | A) > 0.5 > Pr(B). Hence, the qualitative approach leads to
an asymmetric definition of causality that, even in its weakest quantitative
counterpart, is clearly stronger than Good’s standard probabilistic definition.
Causes in the qualitative sense are always causes in the quantitative sense, but
there are probabilistic causes that the qualitative setting does not recognize
as causes.

There are two classes of such situations. First, situations where, although
the presence of the cause does increase the probability of the effect, this latter
probability stays lower than .5:

Pr(B) < Pr(B | A) <
1

2
. (8)

In these situations, ‘A causes B’ in the probabilistic but not in the qualitative
sense, since the normal course of things is to observe B̄ in the context of A.

Remark 6 From the perspective of scientific discovery, it certainly makes sense
to talk about the causal role of A in situation (8). And indeed, the probabilis-
tic definition of causality was proposed with a view to capture the nature of
scientific explanation in experimental fields (see [48] for a retrospective collec-
tion of essays). It may be more debatable whether (8) corresponds to what lay
persons would declare as expressing causality. The close inspection of available
experimental data [13,39] shows that perceptions of causality in this situation
are at best moderate. Note, however, that Pr(B) and Pr(B | A) always have
the same order of magnitude in these experiments.

Although (8) is not a situation recognized as causation by the qualitative
model, it may qualify as a situation of ‘facilitation.’ In [10,11] the facilitation
relation is defined as one where B is abnormal, but becomes neither abnormal
nor normal when A occurs.

There is another class of situations of probabilistic causation that does
not match the requirements for qualitative causation. This class of situations
corresponds to cases where the cause increases the probability of an effect that
was already highly probable:

Pr(B | A) > Pr(B) >
1

2
. (9)

There is no way to express this reinforcement effect in the qualitative set-
ting, due to a lack of expressive power. For A to cause B in the qualitative
sense, it is necessary that the perception of B changes from that of an abnor-
mal event, to that of a normal event when A occurs. A cannot be said to be
a qualitative cause of B when B already belongs to the normal course of the
world even in the absence of A.
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Remark 7 A limit situation occurs when B is neither intrinsically normal nor
abnormal, but becomes normal in the presence of A. In other terms, one is
totally ignorant about whether B is true or not, but starts believing that B
is the case when learning that A has occurred. In a qualitative setting, this
expresses as [21]:

K 6|∼ B and K 6|∼ B̄ and KA |∼ B

The probabilistic counterpart to this limit situation may be considered to
be that wherein Pr(B) = Pr(B̄). This representation is debatable, though,
as it presupposes that ignorance about B is identified with knowledge about
the randomness of B. This situation is not considered to be one of causation
in [11]. Rather, following [21], it is considered one of ‘justification.’ That is,
one where, rather than seeing A as the cause of the occurrence of B, agents
may consider A to be the justification in their belief that B was going to
happen, given that they had not enough information to conclude anything
before hearing that A occurred. Here, a justification is understood as an item
of information inducing an epistemic change from ignorance to belief, while a
cause is viewed as inducing belief reversal.

6.2 Consequences for transitivity

There is a difference of nature between the standard probabilistic definition
of causation and the definition inspired by the qualitative model (notwith-
standing the fact that the first is based on a symmetric property, whilst the
second is asymmetric). Quantitatively, causality is understood in terms of a
positive influence of one event on another one, regardless of the prior proba-
bility or this last event. Qualitatively, causality is restricted to situations of
tendency reversal, whereby an abnormal state of affairs becomes normal upon
the occurrence of some event.

Because the quantitative rendition (7) of the qualitative definition of causal-
ity is stronger than the standard probabilistic model, the question arises
whether Saliency would ensure the transitivity of this stronger notion of cau-
sation. The following counterexample shows that this is not the case. Suppose
A causes B and B causes C in the sense of (7), and that Saliency strictly holds,
i.e., Pr(A | B) = 1. Suppose observations as in Table 5. Note that Pr(B) < 1

2 ;
Pr(C) < 1

2 . Moreover Pr(B | A) = 18
35 > 1

2 ; Pr(C | B) = 10
18 > 1

2 ; However,
Pr(C | A) = 14

35 <
1
2 .

One may think of strengthening again the definition of causation by in-
creasing the threshold k and change (7) into what could be called k-causation:

Pr(B) ≤ 1− k < 0.5 and Pr(B | A) ≥ k. (10)

However we can show by means of the generic counterexample in Table 6 that
the Saliency condition is not sufficient to ensure transitivity of k-causation,
however close is k to 1.
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Table 5 Counterexample to transitivity under saliency and strengthened causation.

Ā A

B̄ B B̄ B

C̄ 55 0 13 8
C 10 0 4 10

Table 6 Counterexample to the transitivity of k-causation under saliency.

Ā A

B̄ B B̄ B

C̄ x 0 w 2w

C y 0 0 5wk
2(1−k)

Indeed, the conditions Pr(B) ≤ 1 − k; Pr(C) ≤ 1 − k can be achieved
by choosing a sufficiently high value of x = Pr(ĀB̄C̄), tuning w = Pr(AB̄C̄)
accordingly for a fixed value of k. Furthermore, when 0.5 < k < 1, it is clear
that Pr(B | A) = 4+k

6−k > k ; Pr(C | B) = 5k
4+k > k; but Pr(C | A) = 5k

6−k < k.
What it means is that when k increases and the notion of k-causation becomes
more demanding, there always exists a small range of situations that do not
sanction transitivity. This range shrinks when k increases—and it vanishes
when k = 1.

Note that replacing Saliency by the two Markov conditions will not do any
better at ensuring the transitivity of k-causation. Indeed, suppose Pr(C|B) =
Pr(B|A) = k > 0.5. Then, Pr(C|A) = Pr(C|B) Pr(B|A) + Pr(C|B̄)(1 −
Pr(B|A)), using both Markov condition. Therefore: Pr(C|A) = k2+Pr(C|B̄)(1−
k). Letting Pr(C|B̄) < k, we arrive at Pr(C|A) < k.

Although, stricto sensu, the transitivity of k-causation can fail under Markov
conditions and Saliency, the condition Pr(C|A) ≥ Pr(C | B) Pr(B | A) > k2 is
always derivable from Pr(B|A) > k and Pr(C|B) > k, under the saliency
condition Pr(A|B) = 1, from equation (6), with no other assumption. If
Pr(B|A) and Pr(C|B) are significantly greater than k, then it is possible that
Pr(C|A) ≥ Pr(C | B) Pr(B | A) > k. Furthermore, from a psychological per-
spective, it is conceivable that, for some high values of k2, some individuals may
perceive the causal chain as transitive in situations where k2 < Pr(C|A) < k.

Interestingly, the above discussion suggests a distinction between proba-
bilistic causation and commonsense causality, where the conditions for tran-
sitivity differ. We just showed that the qualitative representation of common-
sense causality may have a probabilistic rendition that enabled us to compare
it to the more traditional notion of probabilistic causation. However, there is
still a major difference between the two probabilistic frameworks. Probabilistic
causation always assumes probabilistic data is available and that correlation,
understood or not as causation, can be read from this data. In the case of com-
monsense causality, such an assumption cannot be made. Asserting causality
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and its transitivity are expressed by constraints valid for a family of probabil-
ity functions. So the probabilistic framework suggested here for commonsense
causality belongs to the framework of imprecise probability representations
[49], rather than orthodox probability settings.

7 Behavioral Results

A case can be made for the idea that the two models we have compared in this
article do not address the same phenomenon. The probabilistic definition of
causation introduced after Good, and popularized by epistemologists, aims at
detecting a positive influence in data observed from natural phenomena. Such
causal relations can be read from a careful scrutiny of contingency tables.
In contrast, the qualitative model captures a more mundane, commonsense,
everyday variant of causation—whereby the change of a state of affairs is
understood as caused by the prior occurrence of some abnormal event. This
form of causal thinking often comes down to explaining an abnormal fact
by some unexpected circumstances. These two kinds of causal thinking are
quite distinct, as shown in this article, and perhaps it is no surprise that their
transitivity conditions differ.

This observation raises the (widely unaddressed) empirical question of the
transitivity of everyday causal thinking. Is everyday causal reasoning, which
we take to be qualitative in nature, unconditionally transitive ? And if not, is it
sensitive to Saliency, or to Markovian considerations ? The very few behavioral
studies that addressed the issue of causal transitivity invariably found that
human participants appeared to endow causal relations with full transitivity
[2,3,27]. These results, however, must be taken with caution, because they
used a very limited sample of causal relations. In particular, no effort was ever
made in any of these studies to use causal relations that may defeat transitivity.
Overall, we may not want to draw any strong conclusions based on a limited,
homogeneous sample of causal relations.

Our first empirical contribution will be to show that transitive causal con-
clusions can easily be defeated if appropriate causal relations are proposed to
human reasoners. Our second question is whether everyday inferences from
causal chains are sensitive to Saliency, or to Markovian considerations. If, as
we suspect, laypersons adopt a qualitative approach to everyday causal reason-
ing, then they may perform two different tests before they accept a transitive
conclusion. They may consider whether the chain is Markovian (and endorse
the transitive conclusion if it is), or they may test whether the first term of the
chain is the most salient cause of the middle term (and endorse the transitive
conclusion if it is).

Because the qualitative (positive) Markov condition is a weaker condition
for transitivity than the Saliency condition, the fact that Saliency holds or
not should not affect transitive inferences as long as the chain is Markovian.
However, we speculate that the Saliency test is much easier and more natural,
cognitively speaking, than the Markov test. In other terms, reasoners may be
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likely to substitute the Markov condition with the easier and more natural
Saliency condition. As a consequence, we predict that transitive inferences
may be rejected even when the chain is Markovian, as soon as the chain does
not meet the Saliency condition.

7.1 Materials for the experiments

The goal of our experiments is to show that human reasoners rely on the
Saliency condition, rather than the Markov condition, when they assess the
transitivity of a causal chain. To that end, we will construct causal chains
that do or do not satisfy the Saliency condition, but that always satisfy the
Markov condition. We will then measure whether human reasoners reject the
transitivity of causal chains that do not satisfy the Saliency condition, even
though they satisfy the Markov condition.

As a preliminary to our experiments, we constructed six causal chains,
following a two-step process. The first step consisted of selecting the ‘A causes
B’ relation of the chain: The constraint was that three causal relations among
the six should involve many salient possible causes other than A, and that in
the three other relations there should have few or no salient possible causes
other than A. We took advantage of prior work in the experimental psychology
of reasoning that commonly test various relations for the number of alternative
causes that they spontaneously suggest to human reasoners [14,19,46]. We
selected from [14,19] three relations with one salient cause, and three relations
with many possible causes.

The second step was to construct the ‘B causes C’ relation of each chain,
so that the whole chain would be Markovian. We tentatively selected relations
that intuitively appeared to be Markovian. To test this intuition prior to using
the chains in our series of experiments, we presented 35 adult participants
(4 men; mean age = 22.5, square deviation = (SD) = 8.5) with a Markov-
assessment task consisting of 10 problems. Each problem was introduced by a
sentence that provided a minimal context. Then, the conditional probabilities
Pr(C|AB) and Pr(C|ĀB) were compared by means of the following question:
What is more likely to be true, ‘if A and B then C,’ or ‘if Ā and B then
C’? (The former is more likely, the latter is more likely, they are equally
likely.) Previous research showed that this conditional formulation captures lay
perceptions of conditional probability [42]. Here is an example of a complete
problem:

Carole is coming back from a mountain trek. What is more likely to be true: ‘if
Carole encounters a bear and runs, then she is out of breath,’ or ‘if Carole does not
encounter a bear and runs, she is out of breath’? (The former is more likely, the
latter is more likely, they are equally likely.)

Six of the 10 problems featured the preselected causal relations, and four
problems featured filler items chosen so that they would likely violate the
Markov assumption. (Such filler items are commonly inserted in psychological
questionnaires alongside items of interest.) The 10 problems appeared in one
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random order in half the questionnaire, and in the inverse order in the remain-
ing half. For half the participants, the question was phrased: What is more
likely to be true, ‘if A and B then C,’ or ‘if Ā and B then C’? For the other
half, the order of the clauses was reversed: What is more likely to be true, ‘if
Ā and B then C,’ or ‘if A and B then C’?

Half of the participants responded first to the Pr(C|AB) question, and the
other half responded first to the Pr(C|ĀB) question.

We considered that a chain was Markovian if the most frequent answer
to the corresponding problem was they are equally likely. Such was the case
for all six target problems (51–91% of they are equally likely answers), but for
none of the four filler items (2–26% of they are equally likely answers). We thus
made the decision to use these six causal chains in our series of experiments.

The exact phrasing of the causal chains varied in the three experiments,
in order to ensure that our findings were robust over the various forms that
causality may take in natural language. In Experiment 1, the causal chains
were described as ‘C occurred because of B, B occurred because of A.’ In
Experiment 2, the phrasing was ‘A caused B, B caused C.’ In Experiment 3,
the phrasing was ‘A generally causes B, B generally causes C.’ Couched in
the phrasing of Experiment 1, the three (Markovian) chains with one salient
cause were:

finger Didier was repairing his washing machine. He put a bandage on his finger because
it bled. His finger bled because he cut it.

kettle Émilie had put her kettle on the stove. The kettle whistled because the water was
boiling. The water was boiling because it had been heated to 100 degrees.

weapon Fabrice was suspected of murder. He was convicted because his fingerprints were
on the weapon. His fingerprints were on the weapon because he held it without wearing
gloves.

Using the same phrasing, the three (Markovian) chains with many possible
causes were:

apple Alice was asleep under an apple tree. She woke up because an apple fell on her. The
apple fell on her because it was ripe.

bear Carole was coming back from a mountain trek. She was out of breath because she
had run. She had run because she had encountered a bear.

cough Benjamin was playing in the living room. He was scared because his father coughed
in the next room. His father coughed because his food went down the wrong way.

To prevent the potential objection that lesser transitivity of the Many pos-
sible causes chains may be attributed to their being Markovian to a lesser
degree, we note that the chains meant for the Many possible causes condition
(that we predict to be intransitive) were judged as Markovian to an over-
all greater extent than the chains meant for the One salient cause condition
(apple 91%, bear 77%, cough 51%; vs. finger 51%, kettle 51%, weapon
57%).

7.2 Experiment 1

Method Participants were 50 undergraduate students at the University of
Toulouse (11 men; mean age = 21.5, SD = 5.3), who volunteered to com-
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plete the questionnaire during class time. None of them had previous training
in the philosophy or psychology of causation. It took less than 10 minutes to
complete the questionnaire.

Participants solved six transitivity problems. All problems followed the
same 3-part format: (a) One sentence setting a minimal context; (b) One
sentence stating that C happened because of B; (c) One sentence stating that
B happened because of A. Participants rated on a 5-point scale the correctness
of the conclusion ‘C happened because of A’ (totally incorrect, rather incorrect,
could be correct as well as incorrect, rather correct, totally correct ; encoded
−2,−1, 0,+1,+2, respectively). For example, the bear problem read:

Carole was coming back from a mountain trek. She was out of breath because she
had run. She had run because she had encountered a bear. Was Carole out of breath
because she had encountered a bear?

In three problems (finger, kettle, weapon), the causal relation between
A and B had one salient cause. In the other three problems (apple, bear,
cough), it had many possible causes. The six problems were presented in
random order in one half of the questionnaires, and in reverse order in the
other half.

Results Participants’ ratings were encoded from −2 to +2, with positive rat-
ings indicating acceptance of transitivity. The left part of Fig. 1 displays the
global distribution of the 300 responses to problems with one salient cause vs.
many possible causes. We averaged each participant’s responses to the three
problems with one salient cause (on the one hand), and to the three problems
with many possible causes (on the other hand). In the three problems with one
salient cause, mean transitivity acceptance was +1.0 (SD = 0.8), whilst it was
only −0.6 (SD = 0.9) in the three problems with many possible causes. This
difference cannot be attributed to chance, t(49) = 10.0, p < .001, and it is of
huge magnitude as per the standards of experimental psychology (d = 1.9).
This is in fact the case for all the experimental findings we report in this ar-
ticle. Overall, the transitive conclusion was endorsed (i.e., encoded as +1 or
+2) for 80% of the problems with few alternatives, but only for 24% of the
problems with many alternatives .

Mean acceptance ratings for the three problems in the One salient cause
condition (finger, kettle, weapon) were +0.8 (SD = 1.3), +1.1 (SD =
1.2), and +1.2 (SD = 1.0), respectively. On the contrary, mean acceptance
ratings for the three problems in the Many possible causes condition (apple,
bear, cough) were −0.8 (SD = 1.1), −0.6 (SD = 1.1), and −0.2 (SD =
1.2), respectively. In other terms, participants globally accepted transitivity in
the three problems of the One salient cause condition, but globally rejected
transitivity in the three problems of the Many possible causes condition.

7.3 Experiment 2

Method Participants were 51 undergraduate students drawn from the same
population as in Experiment 1 (17 men; mean age = 22.4, SD = 3.1). Ex-
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Fig. 1 Distribution of responses to the transitivity question in Experiment 1 (causal ex-
planation), Experiment 2 (particular causal attribution), and Experiment 3 (general causal
attribution), for the problems with many possible causes, and for the problems with one
salient cause. In all three experiments, transitivity clearly holds for problems with one salient
cause, but tends not to hold for problems with many possible causes.

periment 2 was similar to Experiment 1, except that arguments were framed
as particular causal attributions rather than causal explanations. The bear
problem read:

Carole was coming back from a mountain trek. Encountering a bear had caused her
to run. Running had caused her to be out of breath. Did encountering a bear cause
Carole to be out of breath?

Results The central part of Fig. 1 displays the global distribution of the 306
responses to problems with one salient cause vs. many possible causes. In the
three problems with one salient cause, mean transitivity acceptance was +1.1
(SD = 0.7), whilst it was only −0.3 (SD = 0.9) in the three problems with
many possible causes; t(50) = 10.2, p < .001, d = 1.7. Overall, the transitive
conclusion was endorsed (i.e., encoded a +1 or a +2) for 76% of the problems
with one salient cause, but only for 21% of the problems with many possible
causes.

Once more, participants accepted transitivity in the three problems with
one salient cause, but rejected transitivity in the three problems with many
possible causes. Mean acceptance ratings for the three problems with one
salient cause (finger, kettle, weapon) were +1.3 (SD = 0.9), +1.2 (SD =
1.0), and +0.9 (SD = 1.0), respectively. On the contrary, mean acceptance rat-
ings for the three problems with many possible causes (apple, bear, cough)
were −0.5 (SD = 1.1), −0.2 (SD = 1.1), and −0.1 (SD = 1.2), respectively.
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7.4 Experiment 3

Method Participants were 48 undergraduate students drawn from the same
population as in Experiment 1 and 2 (8 men; mean age = 21.2, SD = 4.5).
Experiment 3 was similar to Experiments 1 and 2, except that the problems
were framed as general causal attributions. The bear problem read:

Encountering a bear during a trek generally causes people to run. Running generally
causes people to be out of breath. Can you conclude that encountering a bear during
a trek generally causes people to be out of breath?

Philosophers carefully distinguish such generic causation from the instanti-
ated causation featured in Experiments 1 and 2. However, the models we have
addressed in this article do not make such a careful distinction. Therefore, it
was a natural step to attempt to generalize the findings of Experiments 1 and
2 to generic causation.

Results The right part of Fig. 1 displays the global distribution of the 288
responses to problems with one salient cause vs. many possible causes. In the
three problems with one salient cause, mean transitivity acceptance was +0.8
(SD = 0.7), whilst it was only −0.6 (SD = 0.7) in the three problems with
many possible causes; t(47) = 9.5, p < .001, d = 2.0. Overall, the transitive
conclusion was endorsed (i.e., encoded a +1 or a +2) for 84% of the problems
with one salient cause, but only for 33% of the problems with many possible
causes.

As previously, participants accepted transitivity in the three problems
with one salient cause, but rejected transitivity in the three problems with
many possible causes. Mean acceptance ratings for the three problems with
one salient cause (finger, kettle, weapon) were +0.9 (SD = 1.0), +1.1
(SD = 1.2), and +0.4 (SD = 1.3), respectively. On the contrary, mean ac-
ceptance ratings for the three problems with many possible causes (apple,
bear, cough) were −0.9 (SD = 1.1), −0.4 (SD = 1.1), and −0.5 (SD = 1.0),
respectively.

7.5 Discussion of behavioral findings

Three behavioral experiments robustly established two main findings. First, lay
reasoners do not unconditionally accept the transitivity of causal arguments.
This is, to our knowledge, the first time that this fact is clearly established
by empirical findings. Second, as expected from the qualitative framework,
Saliency is clearly an important factor in the transitivity of ordinary causal
transitive judgments, over and above the Markovian character of the causal
chains involved. Our results suggest that lay reasoners base their transitive
judgments on ‘quick and dirty’ qualitative Saliency considerations, rather than
on more sophisticated Markovian considerations, be they qualitative or quan-
titative.
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8 Conclusion

In this article, we have addressed the conditions under which transitive con-
clusions from causal chains become acceptable. Knowing that A causes B and
that B causes C, when are we ready to conclude that A causes C ? We tackled
this question through two formal approaches to causation. The first approach
is quantitative, and defines causation in terms of probabilistic contrast. The
second approach is qualitative, and defines causation in terms of nonmonotonic
consequence relations.

We showed that in both approaches, Markovian chains allow transitive
conclusions; but also that the qualitative approach features a specific condi-
tion for transitivity, which is stronger than the Markov condition. Saliency is
a sufficient condition for transitivity in the qualitative approach, not in the
quantitative approach. Informally speaking, a causal chain “A causes B, B
causes C” meets the saliency condition when the occurrence of A is commonly
inferred from the occurrence of B; that is, when A can be plausibly inferred
from knowing B.

We suggested that the qualitative and quantitative approaches reflected
different perspectives on causation, and that the qualitative approach might be
closer to the ordinary perspective on causation, adopted in everyday reasoning.
Furthermore, we speculated that ordinary reasoners were likely to substitute
the weaker Markov condition with the stronger, but cognitively easier, Saliency
condition. We thus predicted that the transitivity of ordinary causal inferences
would be sensitive to the Saliency condition, even when the Markov condition
was otherwise satisfied. We repeatedly validated this speculation through three
behavioral experiments, using various linguistic expressions for the denotation
of causal relations.

Causality is clearly a multifaceted notion; and one reason for the wide
variety of approaches to causality may be the existence of several notions and
several contexts having to do with the informal idea of a cause [5]. Few scholars
acknowledged this state of facts to the point of suggesting which formal model
could account for which variant of causality. We tentatively suggested that the
two approaches we studied in this article must not be thought of as competing
for providing the best account of causality, but rather as formally tackling two
variants of causation.

The scientific variant of causation is essentially concerned with the in-
fluence of some variables on other variables; but the commonsense variant of
causation rather deals with the way lay persons explain the sudden occurrence
of otherwise unexpected events. Because the Markov condition naturally mo-
tivates the transitivity of influences among variables, it fits the perspective of
the scientific variant, and is accordingly given a prominent role in a literature
centered on scientific causation. In the present article, though, we have shown
that the commonsense variant of causation may also be tackled formally; and
that the difference between the two variants can be laid bare by the exis-
tence of different conditions for transitivity. This is an important step toward
a complete description of the formal properties of commonsense causation.
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