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Abstract. A model is defined that predicts an agent’s ascriptions
of causality (and related notions of facilitation and justification) be-
tween two events in a chain, based on background knowledge about
the normal course of the world. Background knowledge is repre-
sented by nonmonotonic consequence relations. This enables the
model to handle situations of poor information, where background
knowledge is not accurate enough to be represented in, e.g., struc-
tural equations. Tentative properties of causality ascriptions are ex-
plored, i.e., preference for abnormal factors, transitivity, coherence
with logical entailment, and stability with respect to disjunction and
conjunction. Empirical data are reported to support the psychological
plausibility of our basic definitions.

1 INTRODUCTION
Models of causal ascriptions crucially depend on the choice of an
underlying representation for the causality-ascribing agent’s knowl-
edge. Unlike standard diagnosis problems (wherein an unobserved
cause must be inferred from observed events and known causal
links), causality ascription is a problem of describing as ‘causal’ the
link between two observed events in a sequence. The first step in
modeling causal ascription is to define causality in the language cho-
sen for the underlying representation of knowledge. In this article,
we define and discuss a model of causal ascription that represents
knowledge by means of nonmonotonic consequence relations.3 In-
deed, agents often must cope with poor knowledge about the world,
under the form of default rules. Clearly, this type of background
knowledge is less accurate than, e.g., structural equations. It is nev-
ertheless appropriate to predict causal ascriptions in situations of re-
stricted knowledge. Section 2 presents the logical language we will
use to represent background knowledge. Section 3 defines our main
notions of causality and facilitation ascriptions. Empirical data are
reported to support the distinction between these two notions. Sec-
tion 4 establishes some formal properties of the model. Section 5 dis-
tinguishes the notion of epistemic justification from that of causality.
Section 6 relates our model to other works on causality in AI.

2 MODELING BACKGROUND KNOWLEDGE
The agent is supposed to have observed or learned of a sequence of
events, e.g.: ¬Bt, At, Bt+1. This expresses that B was false at time t,
when A took place, and that B became true afterwards (t + 1 denotes
a time point after t). There is no uncertainty about these events.

Besides, the agent maintains a knowledge-base made of condi-
tional statements of the form ‘in context C, if A takes place then B
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is generally true afterwards’, or ‘in context C, B is generally true’.
These will be denoted by At ∧ Ct |∼ Bt+1, and by Ct |∼ Bt, respec-
tively. (Time indices will be omitted when there is no risk of confu-
sion.) The conditional beliefs of an agent with respect to B when an
action A takes place or not in context C can take three forms: (i) If
A takes place B is generally true afterwards: At ∧ Ct |∼ Bt+1; (ii) If
A takes place B is generally false afterwards: At ∧ Ct |∼ ¬Bt+1; (iii)
If A takes place, one cannot say whether B is generally true or false
afterwards: At ∧Ct 6|∼ Bt+1 and At ∧Ct 6|∼ ¬Bt+1.

We assume that the nonmonotonic consequence relation |∼ satis-
fies the requirements of ‘System P’ [18]; namely, |∼ is reflexive and
the following postulates and characteristic properties hold (|= denotes
classical logical entailment):

Left Equivalence E |∼ G and E ≡ F imply F |∼ G
Right Weakening E |∼ F and F |= G imply E |∼ G

AND E |∼ F and E |∼ G imply E |∼ F ∧G
OR E |∼ G and F |∼ G imply E ∨ F |∼ G

Cautious Monotony E |∼ F and E |∼ G imply E ∧ F |∼ G
Cut E |∼ F and E ∧ F |∼ G imply E |∼ G

In addition, we assume 6|∼ to obey the property of Rational
Monotony, a strong version of Cautious Monotony[19]:

Rational Monotony E 6|∼ ¬F and E |∼ G imply E ∧ F |∼ G

Empirical studies repeatedly demonstrated [1, 2, 5, 10, 24] that
System P and Rational Monotony provide a psychologically plausi-
ble representation of background knowledge and default inference.
Arguments for using nonmonotonic logics in modeling causal rea-
soning were also discussed in the cognitive science literature [26].

3 ASCRIBING CAUSALITY OR FACILITATION

In the following definitions, A, B, C, and F are either reported actions
or statements describing states of affairs, even though notations do
not discriminate between them, since the distinction does not yet play
a crucial role in the model. When nothing takes place, the persistence
of the truth status of statements is assumed in the normal course of
things, i.e., Bt |∼ Bt+1 and ¬Bt |∼ ¬Bt+1.

Assume that in a given context C, the occurrence of event B is
known to be exceptional (i.e., C |∼ ¬B). Assume now that F and A
are such that F ∧ C 6|∼ ¬B on the one hand, and A ∧ F ∧ C |∼ B
on the other hand; we will say that in context C, A together with
F are perceived as the cause of B (denoted C : A ∧ F ⇒ca B), while
F alone is merely perceived to have facilitated the occurrence of B
(denoted C : F ⇒fa B).

Definition 1 (Facilitation ascription). An agent that, in context C,
learns of the sequence ¬Bt , Ft, Bt+1 will judge that C : F ⇒fa B if it
believes that C |∼ ¬B, and that both F ∧C 6|∼ ¬B and F ∧C 6|∼ B.



Definition 2 (Causality ascription). An agent that, in context C,
learns of the sequence ¬Bt , At, Bt+1 will judge that C : A⇒ca B if it
believes that C |∼ ¬B, and A ∧C |∼ B.

Example 1 (Driving while intoxicated). When driving, one has
generally no accident, Drive |∼ ¬Accident. This is no longer true
when driving while drunk, which is not as safe, Drive ∧ Drunk 6|∼
¬Accident); moreover, fast driving while drunk will normally lead to
an accident, Drive ∧ Fast ∧ Drunk |∼ Accident. Suppose now that
an accident took place after the driver drove fast while being drunk.
Fast ∧ Drunk will be perceived as the cause of the accident, while
Drunk will only be judged as having facilitated the accident.

Note that Def. 1 is weaker than saying F ‘prevents’ ¬B from per-
sisting: 6|∼ does not allow the jump from ‘not having ¬B’ to ‘B’. In
Def. 2, the fact that B is exceptional in context C precludes the possi-
bility for C to be the cause of B – but not the possibility that B |= C,
i.e., that C is a necessary condition of B. Thus, context can be a nec-
essary condition of B without being perceived as its cause.

An interesting situation arises when an agent only knows that
C |∼ ¬B and F ∧ C 6|∼ ¬B, and learns of the sequence of events
¬Bt (in context C), Ft, Bt+1. Although this situation should lead the
agent to judge that C : Ft ⇒fa Bt+1, it may be tempting to judge that
C : Ft ⇒ca Bt+1, as long as no other potential cause reportedly took
place. Another interesting situation arises when, in context C, an
agent learns of the sequence ¬Bt, At, and Bt+1, while it believes that
¬Bt ∧ C |∼ ¬Bt+1, and that At ∧ C |∼ ¬Bt+1. Then the agent can-
not consider that C : At ⇒ca Bt+1, and it may suspect some fact went
unreported: finding about it would amount to a diagnosis problem.

There is no previous empirical support to the distinction we intro-
duce between ascriptions of cause and facilitation. To check whether
this distinction has intuitive appeal to lay reasoners, we conducted
two experiments in which we presented participants with different
sequences of events. We assessed their relevant background knowl-
edge, from which we predicted the relations of cause and facilita-
tion they should ascribe between the events in the sequence. We then
compared these predictions to their actual ascriptions.

3.1 Experiment 1
Methods Participants were 46 undergraduate students. None was

trained in formal logic or in philosophy. Participants read the sto-
ries of three characters, and answered six questions after reading
each story. The three characters were described as constantly feeling
very tired (an uncommon feeling for them) after two recent changes
in their lives: working at night and having a stressful boss (for the
first character), working at night and becoming a dad (for the sec-
ond character), and having a stressful boss and becoming a dad (for
the third character). The first three questions assessed participants’
background knowledge with respect to (i) the relation between the
first event and feeling constantly tired; (ii) the second event and feel-
ing constantly tired; and (iii) the conjunction of the two events and
feeling constantly tired. For example:

What do you think is the most common, the most normal: Working at
night and feeling constantly tired, or working at night and not feeling
constantly tired? or are those equally common and normal?

Participants who chose the first, second, and third answer were as-
sumed to endorse WorkNight |∼ Tired; WorkNight |∼ ¬Tired; and
(WorkNight 6|∼ Tired) ∧ (WorkNight 6|∼ ¬Tired), respectively. The
fourth, fifth, and sixth questions assessed participants’ ascriptions of
causality or facilitation between (i) the first event and feeling con-
stantly tired; (ii) the second event and feeling constantly tired; and

(iii) the conjunction of the two events and feeling constantly tired.
E.g., one of these questions read:

Fill in the blank with the word ‘caused’ or ‘facilitated’, as seems the
most appropriate. If neither seems appropriate, fill in the blank with
‘’: Working at night . . . the fact that Julien feels constantly tired.

Results Out of the 116 ascriptions that the model predicted to be
of facilitation, 68% indeed were, 11% were of causality, and 21%
were neither. Out of the 224 ascriptions that the model predicted
to be of causality, 46% indeed were, 52% were of facilitation, and
2% were neither. The global trend in the results is thus that back-
ground knowledge that theoretically matches a facilitation ascription
indeed largely leads people to make such an ascription, while back-
ground knowledge that theoretically matches a causality ascription
leads people to divide equally between causality and facilitation as-
criptions. This trend is statistically reliable for almost all ascriptions
required by the task. Relevant statistics (χ2 scores) are higher than
7.7 for 7 out of the 9 ascriptions (p < .05, one-tailed, in all cases),
and higher than 3.2 for the remaining two ascriptions (p < .10, one-
tailed, in both cases). From these results, it appears that the notion of
facilitation does have intuitive appeal to lay reasoners, and that it is
broadly used as defined in our model. In particular, it clearly has a
role to play in situations where an ascription of causality sounds too
strong a conclusion, but no ascription at all sounds too weak.

3.2 Experiment 2

Experiment 2 was designed to consolidate the results of Experiment 1
and to answer the following questions: Does the fact that background
knowledge match Def. 1 or Def. 2 affect the strength of the link par-
ticipants perceive between two reported events, and does this per-
ceived strength in turn determine whether they make an ascription of
causality or facilitation?

Methods Participants were 41 undergraduates. Elements of their
background knowledge were assessed as in Exp. 1, in order to select
triples of propositions < Context,Factor,Effect > that matched ei-
ther Def. 1 or Def. 2. E.g., a participant might believe that one has
generally no accident when driving, but that one will generally have
an accident when driving after some serious drinking; for this partic-
ipant, < Drive, SeriousDrinking,Accident > is a match with Def. 2.
Participants then rated on a 9-point scale how strongly Factor and
Effect were related. Finally, as a measure of ascription, they chose an
appropriate term to describe the relation between Factor and Effect,
from a list including ‘causes’ and ‘facilitates’.

Results Out of the 16 ascriptions that the model predicted to be
of facilitation, 14 were so, and 2 were of causality. Out of the 25
ascriptions that the model predicted to be of causality, 11 were so,
and 14 were of facilitation. Beliefs thus had the expected influence
on ascriptions, χ2 = 4.5, p < .05. The trend observed in Experi-
ment 1 is replicated in Experiment 2. We also conducted a mediation
analysis of our data, which consists in a series of 3 regression ana-
lyzes. The direct effect of background knowledge on ascription was
significant, β = .33, p < .05. The effect of background knowledge on
perceived strength was also significant, β = .41, p < .01. In the third
regression, background knowledge and perceived strength were en-
tered simultaneously. Perceived strength was a reliable predictor of
ascription, β = .29, p < .05, which was no longer the case for back-
ground knowledge, β = .23, p > .05. Data thus meet the requirement



of a mediational effect: Whether the background knowledge of par-
ticipants matches Def. 1 or Def. 2 determines their final ascription of
C : Factor ⇒fa Effect or C : Factor ⇒ca Effect through its effect on
the perceived strength of the link between Factor and Effect.

4 PROPERTIES OF CAUSAL ASCRIPTIONS
4.1 Impossibility of mutual causality
Proposition 1. If C : A⇒ca B, then it cannot hold that C : B⇒ca A.

Proof. If C : A⇒ca B, it holds that C |∼ ¬A, C ∧ A |∼ B, and the se-
quence ¬Bt, At, Bt+1 has been observed. This is not inconsistent with
C |∼ ¬A, C∧B |∼ A (the background knowledge part of C : B⇒ca A),
but it is inconsistent with the sequence ¬At, Bt, At+1 that would allow
the ascription C : B⇒ca A. �

4.2 Preference for abnormal causes
Psychologists established that abnormal conditions are more likely
to be selected by human agents as the cause of an event [17] and
more so if this event is itself abnormal [12] (see also [16] in the area
of legal philosophy). Our model reflects this preference: Only what
is abnormal in a given context can be perceived as facilitating or
causing a change in the normal course of things in this context.

Proposition 2. If C : A⇒ca B or C : A⇒fa B, then C |∼ ¬A.

Proof. C |∼ ¬A is false when either C |∼ A or C 6|∼ ¬A. If C |∼ A, it
cannot be true that both C |∼ ¬B and either A∧C 6|∼ ¬B (the definition
of C : A⇒fa B) or A∧C |∼ B (the definition of C : A⇒ca B). This is
due to the Cautious Monotony property of |∼, which forces C ∧ A |∼
¬B from C |∼ A and C |∼ ¬B. Likewise, the Rational Monotony of |∼
forces C ∧ A |∼ ¬B from C 6|∼ ¬A and C |∼ ¬B; thus, it cannot be the
case that C : A⇒fa B or C : A⇒ca B when C 6|∼ ¬A. �

Example 2 (The unreasonable driver). Let us imagine an agent
who believes it is normal to be drunk in the context of driving
(Drive |∼ Drunk). This agent may think that it is exceptional to have
an accident when driving (Drive |∼ ¬Accident). In that case, the
agent cannot but believe that accidents are exceptional as well when
driving while drunk: Drive∧Drunk |∼ ¬Accident. As a consequence,
when learning that someone got drunk, drove his car, and had an ac-
cident, this agent will neither consider that C : Drunk ⇒fa Accident
nor that C : Drunk ⇒ca Accident.

4.3 Transitivity
Def. 2 does not grant general transitivity to⇒ca. If C : A⇒ca B and
C : B⇒ca D, it does not always follow that C : A⇒ca D. Formally:
C |∼ ¬B and A ∧ C |∼ B and C |∼ ¬D and B ∧ C |∼ D do not entail
C |∼ ¬D and A ∧ C |∼ D, because |∼ itself is not transitive. Although
⇒ca is not generally transitive, it becomes so in one particular case.

Proposition 3. If C : A⇒ca B, C : B⇒ca D, and B ∧ C |∼ A, then
C : A⇒ca D.

Proof. From the definition of C : B⇒ca D, it holds that B ∧ C |∼ D.
From B ∧ C |∼ A and B ∧ C |∼ D, applying Cautious Monotony
yields A ∧ B ∧ C |∼ D, which together with A ∧ C |∼ B (from the
definition of C : A⇒ca B) yields by Cut A ∧ C |∼ D; since it holds
from the definition of C : B⇒ca D that C |∼ ¬D, the two parts of the
definition of C : A⇒ca D are satisfied. �

Example 3 (Mud on the plates). Driving back from the countryside,
you get a fine because your plates are muddy, Drive : Mud ⇒ca Fine.
Let us assume that you perceive your driving to the countryside as the
cause for the plates to be muddy, Drive : Countryside⇒ca Mud. For
transitivity to apply, i.e., to judge that Drive : Countryside⇒ca Fine,
it must hold that Mud ∧ Drive |∼ Countryside: If mud on your plates
usually means that you went to the countryside, then the trip can be
considered the cause of the fine. If the presence of mud on your plates
does not allow to infer that you went to the countryside (perhaps
you also regularly drive through muddy streets where you live), then
transitivity is not applicable; you will only consider that the mud
caused the fine, not that the trip did.

4.4 Entailment and causality ascriptions
Classical entailment |= does not preserve ⇒ca. If C : A⇒ca B and
B |= B′, one cannot say that C : A⇒ca B′. Indeed, while A ∧ C |∼ B′

follows by right weakening [18] from A ∧ C |∼ B, it is not generally
true that C |∼ ¬B′, given that C |∼ ¬B. Besides, according to Def-
inition 2, if A′ |= A, the fact that C : A⇒ca B does not entail that
C : A′ ⇒ca B, since C |∼ ¬B and A∧C |∼ B do not entail A′ ∧C |∼ B
when A′ |= A. This fact is due to the extreme cautiousness of System
P. It is contrasted in the following example with Rational Monotony.

Example 4 (Stone throwing). An agent believes that a window
shattered because a stone was thrown at it (Window : Stone ⇒ca

Shatter), based on its beliefs that Window |∼ ¬Shatter and Stone ∧
Window |∼ Shatter. Using the Cautious Monotony of System P,
it is not possible to predict that the agent would make a sim-
ilar ascription if a small stone had been thrown (SmallStone),
or if a white stone had been thrown (WhiteStone), or even if
a big stone had been thrown (BigStone), although it holds that
SmallStone |= Stone, WhiteStone |= Stone, and BigStone |= Stone.
Adding Rational Monotony [19] to System P allows the ascrip-
tions Window : BigStone⇒ca Shatter and Window : WhiteStone⇒ca

Shatter, but also Window : SmallStone ⇒ca Shatter. To block this
last ascription, it would be necessary that the agent has specific
knowledge about the harmlessness of small stones, such as Window∧
Smallstone 6|∼ Shatter or even Window ∧ Smallstone |∼ ¬Shatter.

4.5 Stability w.r.t. disjunction and conjunction
⇒ca is stable with respect to disjunction, both on the right and on the
left, and stable w.r.t. conjunction on the right.

Proposition 4. The following properties hold:

1. If C : A⇒ca B and C : A⇒ca B′, then C : A⇒ca B ∨ B′.
2. If C : A⇒ca B and C : A′ ⇒ca B, then C : A ∨ A′ ⇒ca B.
3. If C : A⇒ca B and C : A⇒ca B′, then C : A⇒ca B ∧ B′.

Proof. Applying AND to the first part of the definitions of
C : A⇒ca B and C : A⇒ca B′, i.e., C |∼ ¬B and C |∼ ¬B′, yields
C |∼ ¬B ∧ ¬B′, and thus C |∼ ¬(B ∨ B′). Now, applying AND to
the second part of the definitions of C : A⇒ca B and C : A⇒ca B′,
i.e., A ∧ C |∼ B and A ∧ C |∼ B′, yields A ∧ C |∼ B ∧ B′, which
together with Right Weakening yields A∧C |∼ B∨B′. The definition
of C : A⇒ca B ∨ B′ is thus satisfied. The proof of Fact 2 is obtained
by applying OR to the second part of the definitions of C : A⇒ca B
and C : A⇒ca B′. Finally, applying AND to the first part of the defi-
nitions of C : A⇒ca B and C : A⇒ca B′, i.e., C |∼ ¬B and C |∼ ¬B′,
yields C |∼ ¬B ∧ ¬B′, which together with Right Weakening, yields



C |∼ ¬B ∨ ¬B′, and thus C |∼ ¬(B ∧ B′). Now, applying AND to the
second part of the definitions of C : A⇒ca B and C : A⇒ca B′, i.e.,
A ∧C |∼ B and A ∧C |∼ B′, yields A ∧C |∼ B ∧ B′. The definition of
C : A⇒ca B ∧ B′ is thus satisfied. �

⇒ca is not stable w.r.t. conjunction on the left. If C : A⇒ca B and
C : A′ ⇒ca B, then it is not always the case that C : A ∧ A′ ⇒ca B
(see example 5). This lack of stability is once again due to the cau-
tiousness of System P; for C : A ∧ A′ ⇒ca B to hold, it is necessary
that C ∧ A |∼ A′ or, alternatively, that C ∧ A′ |∼ A. Then Cautious
Monotony will yield A ∧ A′ ∧C |∼ B. Rational Monotony can soften
this constraint and make it enough that C ∧A 6|∼ ¬A′ or C ∧ A′ 6|∼ ¬A.

Example 5 (Busy professors). Suppose that professors in your de-
partment seldom show up early at the office (Prof |∼ ¬Early). How-
ever, they generally do so when they have tons of student papers to
mark (Prof ∧Mark |∼ Early), and also when they have a grant pro-
posal to write (Prof ∧ Grant |∼ Early). When learning that a pro-
fessor had tons of papers to grade and that she came in early, you
would judge that Prof : Mark ⇒ca Early. Likewise, when learning
that a professor had a grant proposal to write and came in early,
you would judge that Prof : Grant ⇒ca Early. But what if you learn
that a professor had tons of papers to grade and a grant proposal to
write and that she came in early? That would depend on whether
it is an exceptional situation to have to deal with both tasks on
the same day. If it is not exceptional (Mark 6|∼ ¬Grant), then you
will judge that Prof : Mark ∧ Grant ⇒ca Early. If, on the contrary,
Mark ∧ Grant is an exceptional event, it does not hold anymore that
Mark ∧ Grant |∼ Early, and it is thus impossible to feel sure about
Prof : Mark ∧ Grant ⇒ca Early. For example, it might be the case
that faced with such an exceptional workload, a professor will prefer
working at home all day rather than coming to the office. In that case,
her coming in early would be due to another factor, e.g., a meeting
that could not be cancelled.

5 ASCRIPTIONS OF JUSTIFICATION
Perceived causality as expressed in Def. 2 should be distinguished
from the situation that we term ‘justification.’ We write that
C : A⇒ju B when an agent judges that the occurrence of A in context
C gave reason to expect the occurrence of B.

Definition 3 (Justification). An agent that learns in context C of the
sequence ¬Bt , At, Bt+1 will judge that C : A⇒ju B if it believes that
C 6|∼ ¬B, C 6|∼ B and A ∧C |∼ B.

Faced with facts C, ¬Bt, At, Bt+1, an agent believing that C 6|∼ ¬B,
C 6|∼ B and A ∧C |∼ B may doubt that the change from ¬Bt to Bt+1 is
really due to At, although the latter is indeed the very reason for the
lack of surprise at having Bt+1 reported. Indeed, situation ¬Bt at time
t appears to the agent to be contingent, since it is neither a normal
nor an abnormal course of things in context C. This clearly departs
from the situation where C |∼ ¬B and A ∧ C |∼ B, wherein the agent
will judge that C : A⇒ca B. In a nutshell, the case whereby C 6|∼ ¬B,
C 6|∼ B and A ∧ C |∼ B cannot be interpreted as the recognition of a
causal phenomenon by an agent: All that can be said is that reporting
A caused the agent to start believing B, and that she should not be
surprised of having Bt+1 reported.

What we call justification is akin to the notion of explanation fol-
lowing Spohn [27]: Namely, ‘A is a reason for B’ when raising the
epistemic rank for A raises the epistemic rank for B. Gärdenfors
[11] captured this view to some extent, assuming that A is a rea-
son for B if B is not retained in the contraction of A. Williams et al.

[29] could account for the Spohnian view in a more refined way us-
ing kappa-rankings and transmutations, distinguishing between weak
and strong explanations. As our framework can easily be given a
possibilistic semantics [4], it could properly account for this line of
thought, although our distinction between perceived causation and
epistemic justification is not the topic of the above works.

6 RELATED WORKS
Causality plays a central role in at least two problems studied in AI,
diagnosis and the simulation of dynamical systems. Diagnosis prob-
lems are a matter of abduction: One takes advantage of the knowl-
edge of some causal links to infer the most plausible causes of an
observed event [23]. In this setting, causality relations are often mod-
elled by conditional probabilities P(effect|cause).4 Dynamical sys-
tems are modelled in AI with respect, e.g., to qualitative physics [6],
and in logics of action. The relation of nonmonotonic inference to
causality has already been emphasized by authors dealing with rea-
soning about actions and the frame problem [13, 20, 28]. Material
implication being inappropriate to represent a causal link, these ap-
proaches define a ‘causal rule’ as ‘there is a cause for effect B to be
true if it is true that A has just been executed’, where ‘there is a cause
for’ is modelled by a modal operator.

The problem discussed in this paper is not, however, one of clas-
sical diagnosis. Neither does it deal with the qualitative simulation
of dynamical systems, nor with the problem of describing changes
caused by the execution of actions, nor with what does not change
when actions are performed. We are concerned here with a different
question, namely the explanation of a sequence of reported events, in
terms of pairs of events that can be considered as related by a causal-
ity relation. In that sense, our work is reminiscent of the ‘causal logic’
of Shafer [25], which provides a logical setting that aims at describ-
ing the possible relations of concomitance between events when an
action takes place. However, Shafer’s logic does not leave room for
abnormality. This notion is central in our approach, as it directly re-
lates to the relations of qualitative independence explored in [7] –
causality and independence being somewhat antagonistic notions.

Following [22], Halpern and Pearl [14, 15] have proposed a model
that distinguishes real causes (‘cause in fact’) from potential causes,
by using an a priori distinction between ‘endogenous’ variables (the
possible values of which are governed by structural equations, for
example physical laws), and ‘exogenous’ variables (determined by
external factors). Exogenous variables cannot be deemed causal.
Halpern and Pearl’s definition of causality formalizes the notion of
an active causal process. More precisely, the fact A that a subset of
endogenous variables has taken some definite values is the real cause
of an event B if (i) A and B are true in the real world, (ii) this subset is
minimal, (iii) another value assignment to this subset would make B
false, the values of the other endogenous variables that do not directly
participate to the occurrence of B being fixed in some manner, and
(iv) A alone is enough for B to occur in this context. This approach,
thanks to the richness of background knowledge when it is repre-
sented in structural equations, makes it possible to treat especially
difficult examples. Our model is not to be construed as an alterna-
tive or a competitor to models based on structural equations. Indeed,
we see our approach as either a ‘plan B’ or a complement to struc-
tural equation modeling. One might not have access to the accurate

4 Nevertheless, Bayesian networks [21] (that represent a joint probability dis-
tribution by means of a directed graph) do not necessarily reflect causal
links between their nodes, for different graphical representations can be ob-
tained depending on the ordering in which variables are considered [8].



information needed to build a structural equation model; in this case,
our less demanding model might still be operable. Alternatively, a
decision support system may be able to build a structural equation
model of the situation, although its users only have access to quali-
tative knowledge. In that case, the system will be able to compare its
own causality ascriptions to the conclusions of the qualitative model,
and take appropriate explanatory steps, would those ascriptions be
too different. Indeed, our model does not aim at identifying the true,
objective cause of an event, but rather at predicting what causal as-
cription an agent would make based on the limited information it has
at its disposal.

Models based on structural equations are often supplemented with
the useful notion of intervention. In many situations, finding the
cause of an event will be much easier if the agent can directly in-
tervene in the manner of an experimenter. In future work, we intend
to explore the possibility of supplementing our own model with a
similar notion by means of a do(•) operator. An ascription of causal-
ity (resp., facilitation) would be made iff the requirements of Defini-
tion 2 (resp., 1) are met both for A, B, C and for do(A), B, C, where
do(A) means that the occurrence of A is forced by an intervention
[22]. As for now, we only give a brief example of how such an oper-
ator can be used in our approach.

Example 6 (Yellow teeth). An agent learns that someone took up
smoking, that this person’s teeth yellowed, and that this person de-
veloped lung cancer. The agent believes that generally speaking, it
is abnormal to be a smoker, to have yellow teeth, and to develop
lung cancer (resp., (C |∼ ¬Smoke, C |∼ ¬Yellow, C |∼ ¬Lung).
The agent believes that it is normal for smokers to have yellow teeth
(C ∧ Smoke |∼ Yellow) and to develop lung cancer (C ∧ Smoke |∼
Lung), and that it is not abnormal for someone who has yellow teeth
to develop lung cancer (C∧Yellow 6|∼ ¬Lung). From these beliefs and
observations, Definitions 1 and 2 would allow for various ascrip-
tions, including the following one: Smoking caused the yellow teeth
which in turn facilitated lung cancer. With the additional constraint
based on the do(•) operator, only one set of ascriptions remains pos-
sible: Both the yellow teeth and the lung cancer were caused by
smoking. Yellow teeth cannot be said anymore to facilitate lung can-
cer because, inasmuch as lung cancer is generally abnormal, it holds
that C ∧ do(Yellow) |∼ ¬ Lung: There is no reason to think that one
will develop lung cancer after painting one’s teeth yellow.

7 CONCLUDING REMARKS

We have presented a simple qualitative model of the causal ascrip-
tions an agent will make from its background default knowledge,
when confronted with a series of events. In addition to supplement-
ing this model with a do(•) operator, we intend to extend our present
work in three main directions. First, we should be able to equip
our framework with possibilistic qualitative counterparts to Bayesian
networks [3], since System P augmented with Rational Monotony
can be represented in possibilistic logic [4]. Second, we will derive
postulates for causality from the independence postulates presented
in [7]. Finally, in parallel to further theoretical elaboration, we will
maintain a systematic experimental program that will test the psy-
chological plausibility of our definitions, properties, and postulates.
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