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SUMMARY

High levels of human-machine cooperation are required to combine the strengths of human and artificial 
intelligence. Here, we investigate strategies to overcome the machine penalty, where people are less coop-
erative with partners they assume to be machines, than with partners they assume to be humans. Using a 
large-scale iterative public goods game with nearly 2,000 participants, we find that peer rewards or peer 
punishments can both promote cooperation with partners assumed to be machines but do not overcome 
the machine penalty. Their combination, however, eliminates the machine penalty, because it is uniquely 
effective for partners assumed to be machines and inefficient for partners assumed to be humans. These 
findings provide a nuanced road map for designing a cooperative environment for humans and machines, 
depending on the exact goals of the designer.

INTRODUCTION

Artificial intelligence (AI) is often framed as being in competition 
with human intelligence, in the sense that it aims at surpassing hu-
man performance on some benchmark, or at defeating humans in 
zero-sum competitions.1–4 In parallel, though, there has been a 
growing awareness that intelligent machines and humans may 
also be able to initiate and sustain cooperation,5 in order to 
achieve together more than what they could achieve on their 
own. Because it takes two to cooperate, human-machine cooper-
ation is both a technological and psychological challenge: we may 
need to endow machines with cooperative abilities—but, as we do 
in this article, we may also seek to understand and overcome the 
reluctance of people to cooperate with partners they assume 
(correctly or incorrectly) to be machines. Some evidence for this 
reluctance comes from industrial settings6 or customer rela-
tions,7,8 but the bulk of the evidence comes from the same kind 
of lab-based, incentivized games that have long been used to 
study human-human cooperation.9,10 Experimental studies have 
repeatedly pointed to the existence of a ‘‘machine penalty’’11: par-
ticipants in one-shot12–15 and repeated16–18 games (e.g., dictator 
games, ultimatum games, public good games, and prisoners’ di-
lemmas) show non-zero cooperation with partners they assume to 
be machines, but this cooperation is significantly lower than what 
they show to partners they assume to be humans. The machine 
penalty is conceptually unrelated to the aversion that people 
have to let machines make autonomous moral decisions,19 or to 

the aversion that people have to use forecasting algorithms as de-
cision aids,20,21 but it does belong with these two phenomena, to 
the family of behaviors where people show a gamut of less positive 
reactions to machines than the reactions they show to humans.

A machine penalty occurs when people show lower coopera-
tion with partners they ‘‘assume’’ to be humans. The word ‘‘as-
sume’’ is important here, both conceptually and methodologi-
cally, because properly measuring the machine penalty can 
require deceiving experimental participants into thinking they 
are interacting with machines. If one shows that cooperation de-
creases when people interact with machine partners, one 
cannot be sure whether this is due to the limitations of the ma-
chine (the technical challenge, i.e., choosing the appropriate ac-
tions to elicit cooperation), or to the machine penalty (the psy-
chological challenge, i.e., the lower willingness people have to 
cooperate with partners they assume to be machines). This is 
a strong concern in repeated games, in which idiosyncratic ma-
chine behavior can derail cooperation, independently of any 
psychological reluctance to cooperate with machines. The 
methodological solution to this problem is to compare the 
behavior of participants who interact with humans they assume 
to be humans, to the behavior of participants who interact with 
humans they assume to be machines. This implies deceiving 
some participants to believe that they are interacting with ma-
chines, while they are, in fact, interacting with humans. Since 
all cooperation actually happens between humans, a decrease 
in cooperation when participants assume their partners to be 
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machines can be unambiguously attributed to the machine pen-
alty. (While experimental deception is primarily motivated here 
by methodological considerations, it resembles real-world situ-
ations in which machines and humans interact under possible 
misattribution, that is, when people are not sure whether they 
can assume their partners to be humans or machines, and 
whether their assumptions are correct; we will return to this 
point in the discussion section. We also discuss deception in 
more detail in the STAR Methods section).

Here, we show that the tools of peer reward and peer punish-
ment, which already help instill and sustain cooperation between 
humans, can also be used to overcome the machine penalty. In 
human groups, cooperation improves when people can reward 
others for cooperating and punish them for defecting.22–24 Pun-
ishment is a more delicate tool than reward, though. It does not 
always work as well as rewards,25–28 its effects are not always 
predictable when combined with rewards,29 and people typi-
cally show greater reluctance to deliver punishment, compared 
to rewards.30–33 One reason for this reluctance, and for the vol-
atile effects of punishment, is that punishment may backfire 
among humans. It can be perceived as malicious, create resent-
ment, foster a sense of injustice, and start a cycle of retalia-
tion.34,35 Importantly, however, these concerns can be elimi-
nated when partners are assumed to be machines, because 
machines have no perceived emotionality or intentionality.36,37

As a result, punishment may be less of an unpredictable tool 
when partners are assumed to be machines. In this article, we 
show that rewards and punishments both increase cooperation 
with partners assumed to be machines, and that their combina-
tion has unique effectiveness in this context, which results in the 
elimination of the machine penalty. We provide an analysis of the 
behavior underlying this unique effectiveness, but we acknowl-
edge from the outset that this analysis is exploratory: we had 
no a priori expectation to observe this unique effectiveness, 
and our experimental design, while constructed to test the effect 
of rewards, punishments, and their combination, was not con-
structed to confirm the mechanistic explanation we offer based 
on our observation of the descriptive data.

RESULTS

Participants in groups of four interacted through an iterated (also 
often referred to as repeated) public goods game (IPGG). While 
single-shot public goods games have been used to study public 
good provision and its impediments,38,39 IPGGs have been 
deployed to study how cooperation evolves over time for the 
provision of public goods,40 and their external validity has been 
demonstrated in the context of fishing41 and managing common 
forests.42 In an IPGG, a group of individuals, often four, are given 
resources in every round to decide what proportion of those re-
sources, if any, they would allocate to a common pool. The sum 
of these contributions is multiplied by a factor (here, by 1.6) and 
divided evenly among group members at the end of each round, 
and a new round begins with the same individuals. These incen-
tives encourage group members to keep all their resources and 
free ride on others’ contributions. Although this is the dominant 
strategy, should everyone engage in it, the whole group is worse 
off, and only low levels of the public good are provided.

As we already stated, one problem when studying the machine 
penalty is that lower cooperation when people play with ma-
chines can be the result of machine behavior, over and above 
any effect of the machine penalty as a psychological phenome-
non. In other words, people may cooperate less with machines 
not because they are machines but because they behave differ-
ently than humans. To remove this confounding fact, we engage 
in deception. All four-person groups are composed of only peo-
ple. In some groups, participants are correctly informed that their 
three partners are humans. In the other groups, participants are 
told that their three partners are machines. This is the condition in 
which we anticipate that the machine penalty will be strongest 
(future work shall explore the gradual change in group composi-
tion.). We measure the machine penalty as the decrease in coop-
eration in groups where participants assume their partners to be 
machines (see the STAR Methods section for further details).

In all conditions, participants play 20 rounds of a standard 
IPGG. In the baseline condition, at the end of each round, they 
learn about the amount of public good that was provided, but 
they do not know what each player provided, and they cannot 
take any action before the next round begins. In the feedback 
condition, participants do learn what each player contributed 
at the end of each round, but cannot take any action before 
the next round begins. In the reward condition, participants 
get the same information as in the feedback condition, and 
then have the option of rewarding at a cost other players before 
the next round begins. This decision is made for each other 
player individually, which means that participants can give out 
zero to three rewards. The punishment condition is similar, 
except that the decision is not to reward, but to punish at a 
cost. Finally, in the both condition, participants can choose 
either to reward or to punish every other player.

The magnitude of the machine penalty
We start by graphing contributions in the IPGG by experimental 
condition over the 20 rounds of decision-making in Figure 1. 
Before calculating the machine penalty, we note that behavior 
in the groups where participants believe players to be humans 
is similar to what has been documented in previous research.23,29

Using random-effects regression models for participants and 
groups, and fixed effects for rounds, we estimate the machine 
penalty, that is, the gap in contributions between groups where 
partners are assumed to be humans, and groups in which part-
ners are assumed to be machines. The text boxes in Figure 1
report the 95% confidence intervals for this gap in each condition. 
Complete regression tables can be found in the Tables S1–S5.

In the baseline condition, a machine penalty of 2.4–4.0 tokens 
emerges on average across rounds (n = 684 individuals, 171 
groups). For exploratory purposes, we included groups in the 
baseline condition in which participants were told that only 
1–2 other players were machines, instead of being told that all 
other players were machines. Cooperation in these groups is 
shown as a gray line in the baseline panel of Figure 1 and is no 
different than in groups where all players are assumed to be hu-
mans. The machine penalty is conserved in the feedback condi-
tion, with a gap of 1.5–5.8 tokens (n = 328 individuals, 82 
groups). Introducing rewards or punishments improves cooper-
ation compared to baseline,29 but the machine penalty is still 
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conserved, for 2.2–5.9 tokens with rewards (n = 328 individuals, 
82 groups) and 1.0–4.2 tokens with punishments (n = 324 indi-
viduals, 81 groups). However, when both rewards and punish-
ments are available, the machine penalty is finally suppressed: 
we find no credible evidence of a gap, with a 95% confidence in-
terval for the gap of →1.5–2.3 (n = 324 individuals, 81 groups).

When partners are assumed to be machines, the effect of re-
wards and punishment add up: their combination leads to higher 
contributions (by 1.8 tokens on average, p = 0:025) than when 
they are used in isolation (based on a multilevel model with 
random intercept for groups and participants, fixed effect of 
round, comparing the both treatment to the pooled reward 
and punishment treatments). When partners are assumed to 
be humans, rewards and punishments do not add up. Their com-
bination does not lead to a credible increase in contributions 
compared to their use in isolation (decrease of 1 token on 
average, p = 0:170). In other words, combining rewards and 
punishments is inefficient when partners are assumed to be hu-
mans but useful when partners are assumed to be machines— 
which allows to close the gap in contributions between the two 
types of groups, when using rewards and punishments in com-
bination. We now explore possible mechanisms for this effect, 
by considering in turn how participants hand out rewards and 
punishments across conditions, depending on the purported 
composition of their group; and how participants respond to re-
wards and punishments across conditions, also depending on 
the purported composition of their group.

Frequency of rewards and punishments
There are 240 opportunities to hand out a reward for each group of 
4 participants playing for 20 rounds. When only rewards are avail-
able (i.e., no opportunity for punishment), participants who as-
sume that their partners are humans use rewards 176 times on 
average, which corresponds to a 73% reward rate. In the both 
condition where punishments are also available, the reward rate 
drops to 46%. When participants assumed that their partners 
were machines, the reward rate is 47% when only rewards are 
available, and drops to 31% in the both condition where punish-
ments are also available. We fitted a multilevel model in which the 
binary outcome was to hand out a reward, and the predictors were 
the purported composition of the group, the experimental condi-
tion, and their interaction; with random intercepts for groups and 
participants, and a fixed effect of round. This model detected the 
expected effects of the purported group composition (z = → 4:20, 
p<0:001) and experimental condition (z = → 4:76, p<0:001) but no 
interaction effect (z = 1:39, p = 0:165) see Table S6. In other 
words, rewards are less frequent when participants assume their 
partners to be machines, less frequent when punishments are 
also made available, but there is no credible evidence that the 
availability of punishment has different effects in the two types 
of groups—which means in turn that the frequency of reward giv-
ing is an unlikely mechanism to explain the closure of the machine 
penalty in the both condition.

There are 240 opportunities to mete out punishment for 
each group of 4 participants playing for 20 rounds. However, in 

Figure 1. Contributions to the public good over rounds, by experimental condition and purported group composition
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practice and according to previous research,28,43 punishment is 
extremely rare in our experiment. When only punishments are 
available (i.e., no opportunity for rewards), participants who as-
sume their partners to be humans punish 5 times on average, 
which corresponds to a 2% punishment rate, and the punish-
ment rate is 3% when rewards are also available. When partners 
are assumed to be machines, the punishment rate is about 4%, 
whether rewards are available or not. Due to the extreme rarity of 
punishment, our multilevel model did not converge—but given 
this rarity across all conditions and purported group composi-
tion, the frequency of punishment is, again, an unlikely mecha-
nism to explain the closure of the machine penalty in the Both 
condition.

Reaction to rewards
In the punishment-only treatment, participants tentatively in-
crease their contributions to avoid punishment. This increase is 
the same whether they assume their partners to be machines 
or humans, so while average contributions shift upward overall, 
the relative difference between contributions in the two pur-
ported groups (the machine penalty) remains unchanged. In 
other words, fear of punishment raises contributions but does 
not eliminate the machine penalty. When rewards are available, 
participants tentatively increase their contributions to earn re-
wards. In a given round, a participant can receive from zero to 
three rewards from other players. Figure 2 shows how partici-
pants react to the number of rewards they receive—specifically, 
how they adjust their contribution in the next round.

The left panel of Figure 2 displays the behavior of participants 
when only rewards are available (and punishment is not). Partic-
ipants who do not receive any rewards increase on average their 
contribution during the next round, by one or two tokens, regard-
less of the purported composition of their group. Participants 
who assume their partners to be human behave cautiously 
and maintain their contribution level after receiving one to three 
rewards, suggesting they have found a stable contribution 
level that earns rewards reliably. In contrast, participants who 
believe their partners to be machines are more exploratory, 
and decrease their contribution when receiving two to three re-
wards, as if they were testing whether they can continue to earn 
rewards with a lower contribution. Thus, contributions generally 
increase in the reward-only treatment, but the machine penalty 
remains because participants are more conservative when play-
ing with purported humans, and more exploratory when playing 
with purported machines.

As shown in the right panel of Figure 2, this asymmetry disap-
pears when both punishments and rewards are available. While 
this interpretation is entirely exploratory, it appears that the pos-
sibility of punishment discourages participants from testing 
whether they can earn rewards with lower contributions. As a 
result, contributions increase because of the appeal of rewards, 
and participants simultaneously stop testing partners they as-
sume to be machines, which stabilizes contributions to the 
same levels in the two purported groups.

We tested whether the pattern of behavior described above 
was detected by a multilevel model. We stress again that this 

Figure 2. Change in contributions in the next round (95% confidence intervals) conditional on the number of rewards received in the current 
round, across experimental treatments and group compositions
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analysis should be considered exploratory, rather than confirma-
tory, since we conducted it after discovering the behavior of 
participants from the descriptive data. The model aims to predict 
the change in contribution in the next round, with our usual set of 
predictors: experimental condition, group composition, their 
interaction, random intercept for groups and participants, and 
fixed effect of round. Data are restricted to observations 
where participants receive more than one reward, since this 
is the relevant subset of observations according to the descrip-
tive data in Figure 2. The model detects an effect of purported 
group composition (participants increase their contribution less 
when they assume their partners to be machines, z = → 4:3, 
p<0:001) but most importantly an interaction effect between 
experimental condition and purported group composition 
(z = 2:3, p = 0:022), reflecting the positive effect of having 
both punishments and rewards on the contribution change 
when partners are assumed to be machines (see Table S7). 
This substantiates the descriptive findings.

DISCUSSION

To ensure that humans and machines cooperate smoothly, we 
may need to not only endow machines with cooperative abilities 
but also understand how to encourage humans to cooperate 
with machines—in particular, we may want to encourage hu-
mans to cooperate with machines to the same extent that they 
cooperate with other humans, which requires us to overcome 
the machine penalty. Some previous attempts at removing the 
machine penalty tried to humanize machines, following the logic 
that people would cooperate more with machines if the ma-
chines were more human-like.44 For example, in the context of 
human-robot cooperation, robots were given eyes or emotional 
displays45,46; stylized, stereotyped gender cues such as body 
shape or hair length47,48; or a fully humanoid appearance.49,50

This strategy has not proven to be very effective11 and can be 
problematic, in particular when it exploits and possibly amplifies 
pre-existing gender biases.51 An extreme form of the humaniza-
tion strategy is to allow machines to pretend to be humans, for 
example, in online interactions in which they are allowed a hu-
man avatar.52 This can be very effective,16 but it goes against 
the transparency requirements present in many emerging codes 
of ethics for AI.53–55

Here, we explored a different strategy: since cooperation be-
tween humans can be improved with peer rewards and punish-
ments, can these peer rewards and punishments also improve 
cooperation between humans and partners they assume to be 
machines? First, we showed that peer rewards and punish-
ments can largely increase this cooperation in absolute terms, 
but not in relative terms. That is, reward and punishment in-
crease cooperation with partners assumed to be machines, 
but do not close the gap in cooperation rate with partners 
assumed to be humans. This is already a useful set of results, 
if the goal is simply to increase cooperation. If the goal is to over-
come the machine penalty, though, the situation is more compli-
cated. We showed that neither rewards nor punishments, used 
in isolation, could close or even narrow the gap in cooperation 
with partners that are assumed to be humans vs. machines. 
However, the machine penalty is overcome when rewards and 

punishments are used in combination. Exploring the mecha-
nisms for this effect, we found that combining rewards and pun-
ishments was inefficient for partners assumed to be humans 
(i.e., not increasing cooperation any further than rewards or 
punishments already have in isolation) but useful for coopera-
tion with partners assumed to be machines. These results 
have implications for designing cooperative human-machine 
environments, which will depend on the mix of humans and ma-
chines in the environment, the assumptions people make about 
this mix, and the type of cooperation which is the most impor-
tant to promote. Future work should also explore the impact 
of the incentive structure of the game deployed here by modi-
fying e.g., the cost of punishment and/or rewards and their 
impact on those who receive them relative to the gains one 
can make in the public goods game. In addition, it should also 
explore if machines can elicit better outcomes with how they 
play repeated games, which intentionally falls outside of the 
scope of the present study.

Real-world environments can include a hybrid population of 
humans and machines, with the added complication that people 
may not be sure about whether they can assume others to be hu-
mans or machines. For example, machines can account for 1%– 
15% of users on social media platforms such as X, formerly 
known as Twitter,56,57 and generate a disproportionate amount 
of content on important topics, such as climate,58 vaccines,59

and religious tensions.60 People may have the suspicion that 
other users are machines,61 but they are not very good at distin-
guishing human and machine users accurately.62,63 In such con-
texts of uncertainty, one may want to increase cooperation be-
tween all users across the board, without seeking to close the 
machine penalty. In this case, one should use either reward or 
punishments since their combination adds complications without 
efficiency for human-human cooperation—and the choice will 
probably be rewards only, if one wants to avoid the emotional 
and social frictions generated by punishments.

If the goal is instead to specifically encourage cooperation be-
tween humans and partners they assumed to be machines 
(correctly or incorrectly), then one has to decide whether it is 
important or not to also close the machine penalty. If it is a 
requirement, that is, to make people cooperate the same regard-
less of whether they assume their partners to be humans or ma-
chines, then one should use a combination of rewards and pun-
ishments, as indicated by our results. If it is not a requirement to 
close the machine penalty, and one simply seeks to make people 
more cooperative with partners they assume to be machines, 
without reaching human-human levels of cooperation, then 
either reward, punishment, or their combination is appropriate. 
In summary, our results provide a road map for smooth hu-
man-machine cooperation, identifying the different routes we 
can take depending on the specific goals and constraints of 
this cooperation.

Limitations of the study
The study has a few key limitations. First, as discussed at length, 
in order to disentangle the psychological and technical reasons 
behind the machine penalty, we employed deception. Other 
work might address this problem with a different research 
design. Additionally, some of the results we presented here are 
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exploratory in nature. We hope that future work will explore these 
further in a confirmatory study. Furthermore, given funding limi-
tations and the extensive resources required to carry out a large- 
scale data collection for a study we presented here, our work 
does not explore how the results might change, should the 
incentive structure of the public goods game be dramatically 
altered. This should also be investigated in future work.
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The experiment follows a between-person design, and participants were recruited for different conditions on different days (i.e., we 
treat this as random assignment in terms of what actions were available to participants as well as their group composition). Partic-
ipants were blinded to the complete set of experimental conditions. Please refer to the Figures S1–S19 to see the user interface used 
in the experiments. The experiment has been approved by the NYU Abu Dhabi IRB (#HRPP-2019-93). All participants entered the 
experiment after providing informed consent online.

Participants whose data we analyze (i.e., passed comprehension checks, were in complete groups, and did not drop out) across all 
conditions have the following demographic characteristics: 51% identified as female (all other participants identified as male: 48% or 
other 1%), and 82% identified as White (all other participants have identified as American Indian or Alaska Native, Asian or Asian 
American, Black or African American, Hispanic or Latino/a, Middle Eastern or North African, Other, or identified with multiple of these 
categories), with an average age of 38.49 ↓sd = 11:73↔. Our sample is described based on these demographic characteristics, as 
well as education, region and income in Table S13 that shows no meaningful differences across experimental conditions. The sample 
size by experimental condition is the following: 684 respondents in Baseline, i.e., 171 groups; 328 in Feedback, i.e., 82 groups; 324 
in Punishment, i.e., 81 groups; 328 in Reward, i.e., 82 groups’ and 324 in Both, i.e., 81 groups.

All experiments are programmed in SOPHIE.64 We recruit participants on Amazon Mechanical Turk using the services of 
CloudResearch (previously TurkPrime,65). Only MTurk workers 18 years or older, located in the United States—as specified on their 
MTurk account and by their IP address—could see the ‘‘Human Intelligence Task’’ (HIT). To be eligible, workers also needed to have 
at least 100 HITs approved and a 95% approval rating. We also excluded workers from suspicious geolocations and those on the 
‘‘universal exclude list,’’ both managed by CloudResearch. In addition to these filters, we recruit from CloudResearch Approved par-
ticipants to enhance data quality when these filters became available,66 as these individuals have exhibited high levels of engage-
ment and attention in prior tasks managed by CloudResearch.67,68 In the description of the HIT prospective participants were asked 
to complete the study using a computer as the experiment was not optimized for phones and tablets. We organize all HITs in a survey 
group to prevent the same individuals to take part multiple times as well as maintain an external list of MTurk IDs of those who have 
already participated to screen out repeat participation.

Data collection for the Baseline condition took place between the 5th of December, 2021 and the 21st of February, 2022; and for all 
other conditions took place between the 22nd of May, 2022 and the 23rd of November, 2022. We aimed to collect data from 40 groups 
in each experimental condition determined by the information available about contributions and the potential actions group-mem-
bers might take and the identity of group members signaled where all group members completed 20 round in the IPGG. To honor 
the informed consent obtained online, all groups where one or more participants dropped out finished all 20 interactions, and par-
ticipants who finished the study were compensated as described in the consent form, while dropouts were replaced by actual bots. 
Groups with dropouts are not analyzed. As previously described, participants who failed to answer all comprehension check ques-
tions correctly on two attempts have not been analyzed, nor data from those who have not had three other group members to start the 
IPGG. When reporting the sample size these individuals are not counted as they are excluded form analyses. The demographic back-
ground of the individuals who were removed as a result of these steps are shown in Tables S8–S12, and contrasted to the same in-
formation of those who finished the study.

One potential concern could be that some groups do not finish the study due to participants who get punished dropping out. To 
examine this possibility, we looked to see how many participants’ behavior follows this pattern. In the Punishment condition, only 4, 
or 2%, of game dropouts meet this criteria, in the Both condition, these statistics are 9 and 3%, respectively, highlighting the rarity of 
punishment. In the middle of the fielding of the Punishment condition we implemented a screen where dropouts could specify the 
reason why they dropped out, and this screen was active for all respondents in the Both condition. Out of the 13 respondents who 
dropped out after being punished two were ‘‘away from keyboard,’’ two experienced connection problems, two claimed they were 
‘‘kicked out’’ of the game, one had trouble with the submit button, one stated they were bored, and only one referenced ‘‘compen-
sation’’ as their reason for dropping out (the only potential respondent who may have dropped out as a result of being punished). The 

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Analyzed data OSF Registry https://osf.io/2wjrv

Software and Algorithms

SoPHIELABS SophieLabs https://www.sophielabs.com

R v3.6.3 R Core Team https://www.r-project.org
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rest of the respondents (four) did not answer this question. Based on this, we believe that selective dropout as a result of punishment 
is unlikely; therefore, we do not believe that the reported results are biased due to this dynamic.

Participants have been compensated by a participation fee of $1.50 in the Baseline condition, and by $2.00 in all other conditions, 
which was later increased to $2.50 to compensate for the prolonged participation time. In addition, participants also earned a bonus 
from the IPGG and as a result of punishment and reward decisions where applicable. Average total bonuses have been $3.20 in the 
Baseline condition, $2.95 in the Feedback condition, $4.21 in the Reward condition, $3.05 in the Punishment condition, $3.83 in 
the Both condition, respectively. As previously specified, those whose groups have not been composed received their show-up pay-
ment, and those who failed to answer comprehension check questions correctly were extended compensation HITs for $0.10.

In all conditions, participants play 20 rounds of a standard IPGG. In the Baseline condition, at the end of each round, they learn 
about the amount of public good that was provided, but they do not know what each player provided, and they cannot take any action 
before the next round begins. In the Feedback condition, participants do learn what each player contributed at the end of each round, 
but cannot take any action before the next round begins. In the Reward condition, participants get the same information as in the 
Feedback condition, and then have the option of rewarding at a cost other players before the next round begins. This decision is 
made for each other player individually, which means that participants can give out zero to three rewards. The Punishment condition 
is similar, except that the decision is not to reward, but to punish at a cost. Finally, in the Both condition, participants can choose 
either to reward or to punish every other player.

METHOD DETAILS

Our design and parameter choices follow those of Rand and colleagues,29 where the group size is set to 4, the multiplication factor is 
1.6, the cost of rewarding or punishing a member is set to 4MUs, and the impact on the rewarded or punished member is + 12 MUs, 
and →12 MUs, respectively. The main difference between our work and that of Rand and colleagues is the identity of group members 
participants are informed about, as we add machines in the group.

To mathematically formulate the game, let N be the number of players in a group, E be the endowment each player receives in each 
round, ci the contribution of player i to the public pool (0 ↗ ci ↗ E), γ is the multiplication factor of the public good ↓γ = 1:6↔, ri is the 
payoff of player i. The total contribution C by all players to the public pool is: C = 

)N
i = 1ci. Each player receives an equal share of the 

public pool value ↓V = γ ↘ C↔, regardless of their contribution. Therefore, ri = E → ci + V
N in each round.

In the conditions when punishments are allowed, each player will pay a cost δ where δi =
)

j≃⇐i4↘ Dij for punishing other players in 
the group: Dij is player i’s decision on whether to punish player j, Dij = 1 when player i punished player j and 0 otherwise. Furthermore, 
player i will pay a cost for the total number of punishments received Pi = 

)
j≃⇐i → 12↘ Dji.

In the conditions when rewards are allowed, each player will pay a cost δ⇒ where δ⇒i =
)

j≃⇐i4↘ D⇒ij for rewarding other players in the 
group: D⇒ij is player i’s decision on whether to reward player j, D⇒ij = 1 when player i rewarded player j and 0 otherwise. Furthermore, 
player i will receive a benefit for the total number of rewards received Ri = 

)
j≃⇐i12↘ D⇒ji .

In the games with punishment, reward or both, the player i’s individual payoff: ri = E → ci + V
N→ δi → δ⇒i + Pi + Ri per round. Note that in 

the condition where both punishment and reward were available, a player can not be punished and reward by another player at the 
same time.

Prior to participating in the IPGG, participants are informed that: (i) the activity would take a maximum of 40 rounds—in fact 
everyone played only 20 rounds to avoid end of game effects; (ii) each round lasts up to 60 s; (iii) the composition of the group would 
not change (i.e., the same players keep interacting across rounds). Participants are also familiarized with how they might recognize 
machines and people in their group using images. Machines are introduced as ‘‘computer programs that make decisions.’’ In the 
Baseline condition, all participants start with no personal funds, while in all other conditions they receive 50 monetary units 
(MUs), to enable all participants to punish and/or reward if these actions are available in their conditions. Before each round begins, 
all participants receive 20MUs to decide over, and 20MUs = $0.10. After reading the instructions, participants see three visual ex-
amples with calculations that show a situation where (i) all group-members contributed all their funds; (ii) no group-members contrib-
uted anything; (iii) half the group members contributed everything while half contributed nothing. Following these, participants are 
asked four comprehension check questions, which they have to answer all correctly on two attempts, otherwise, they may not 
take part in the study. Where applicable, participants are then introduced to the second stage of decision making. They are told 
that rewards and punishments are costly: they cost 4MUs, but benefit the rewarded by 12MUs, or harm the punished by 12MUs. 
Participants are told that no personal funds can go below zero (i.e., no participant would loose their participation fee). After instruc-
tions for the second stage of decision making, participants see an example where a group member rewards/punishes two other 
group members and are rewarded/punished by two group members. In the Both condition the example shows a group member pun-
ishing one and rewarding one, and experiencing these same actions as well. Similarly to the contribution stage, four comprehension 
check questions follow, and only participants who answered them all correctly on a maximum of two attempts may proceed. Future 
work should explore how the results would change by changing the incentive structure for participants, such as modifying the cost of 
punishment and reward and its impact on the budgets of those punished and rewarded, as well as how these relate to the money one 
could gain in the first stage of the game through public good provision.

When participants completed all these steps they are placed in a waiting room where they are told that a beep will alert them when 
the activity starts. After 5 min of waiting, participants are offered their show-up fee if they would like to leave. After 10 min, participants 
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are automatically given a completion code. While in the waiting room, participants see an image of the one or two decision making 
screens. The screens are annotated to draw their attention to the progression of a round; i.e., how many group members have already 
made a decision and which stage they are in, the slider or radio buttons to make contributions and reward/punishment decisions 
where applicable; the amount they have in their personal account which accumulates after every round of decision making; a depic-
tion of their group that signals group composition; a timer that measures the seconds in a decision making round; and a jar that rep-
resents the common pot, and visually fills after each round of contribution. If participants are in any other condition than the Baseline, 
contributions in the prior round are also highlighted. Lastly, they all see a summary screen to convey how much they earned after both 
rounds (where applicable). The activity is followed by questions related to it, and concludes with information about participants’ de-
mographics and a screen that summarizes all earnings.

Participants’ identity is signaled via images, which is constantly reinforced throughout the experiment. This signal is meant to 
convey who is in a participant’s group, while all participants were, in fact, humans. This inevitably entails deception. In some disci-
plines, like Psychology and Sociology this form of deception, coupled with a debriefing of subjects after the experimental game is 
standard practice, while in others, such as economics, it is seldom used and is against disciplinary norms.69 In the present case, 
it was essential to create a realistic representation of human behavior in a human-machine group where a person believes to be play-
ing with machines, while the machines’ behavior is human-like, preserving the variation that exists in these settings. For this reason, 
using data from the human-only groups does not meet the requirements of the human-machine scenario, as we show that people 
behave in these settings differently. In other words, this research would not be possible without taking this methodological approach, 
and many economists have also recently been of the opinion that deception should be allowed in cases like these.70 Of course, 
deception is not without ethical considerations, such as causing potential embarrassment upon debriefing subjects who find out 
that they played with other people instead of machines. In addition, the common use of deception on the platforms where many re-
searchers collect data may lead to weakening treatment effects where research subjects expect to be deceived to begin with, and 
assume to play with machines, rather than people generally when interacting with purported humans.

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were conducted using the R programming language (v3.6.3) and the lme4 library. No formal sample size estimation was 
conducted; the sample size ↓N = 1988↔was determined based on prior studies and logistical feasibility. Means and 95% confidence 
intervals are reported throughout. Statistical significance was defined as p<0:05, two-tailed.

The magnitude of the machine penalty
In Figure 1 we graph mean contributions in the IPGG by experimental condition over the 20 rounds of decision making. The ribbons 
show the 95% confidence interval of the contribution. Using random-effects regression models for participants and groups, and fixed 
effects for rounds, we estimate the machine penalty, that is, the gap in contributions between groups where partners are assumed to 
be humans, and groups in which partners are assumed to be machines. These estimates are reported in Figure 1 and are labeled 
‘‘Gap Size.’’

Frequency of rewards and punishments
We calculate the frequency of rewards and punishments by considering all the 240 opportunities to hand out a reward or punishment 
for each group of 4 participants playing for 20 rounds in the conditions where this is applicable. We use a simple percentage of these 
possible events when punishments were meted out or rewards were given. We also fitted a multilevel model in which the binary 
outcome was to hand out a reward, and the predictors were the purported composition of the group, the experimental condition, 
and their interaction; with random intercepts for groups and participants, and a fixed effect of round. The same approach could 
not be applied to model punishments due to the extreme rarity of punishment, our multilevel model did not converge.

Reaction to rewards
Figure 2 shows how participants react to the number of rewards they receive—specifically, how they adjust their contribution on 
average in the next round, as well as the 95% confidence interval for this adjustment. We conducted a multilevel model to predict 
the change in contribution in the next round, with our usual set of predictors: experimental condition, group composition, their inter-
action, random intercept for groups and participants, and fixed effect of round.
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