
ARTICLE

Cooperating with machines
Jacob W. Crandall 1, Mayada Oudah 2, Tennom3, Fatimah Ishowo-Oloko 2, Sherief Abdallah 4,5,

Jean-François Bonnefon6, Manuel Cebrian7, Azim Shariff8, Michael A. Goodrich 1 & Iyad Rahwan 7,9

Since Alan Turing envisioned artificial intelligence, technical progress has often been mea-

sured by the ability to defeat humans in zero-sum encounters (e.g., Chess, Poker, or Go). Less

attention has been given to scenarios in which human–machine cooperation is beneficial but

non-trivial, such as scenarios in which human and machine preferences are neither fully

aligned nor fully in conflict. Cooperation does not require sheer computational power, but

instead is facilitated by intuition, cultural norms, emotions, signals, and pre-evolved dis-

positions. Here, we develop an algorithm that combines a state-of-the-art reinforcement-

learning algorithm with mechanisms for signaling. We show that this algorithm can cooperate

with people and other algorithms at levels that rival human cooperation in a variety of two-

player repeated stochastic games. These results indicate that general human–machine

cooperation is achievable using a non-trivial, but ultimately simple, set of algorithmic

mechanisms.

DOI: 10.1038/s41467-017-02597-8 OPEN

1 Computer Science Department, Brigham Young University, 3361 TMCB, Provo, UT 84602, USA. 2 Khalifa University of Science and Technology, Masdar
Institute, P.O. Box 54224, Abu Dhabi, United Arab Emirates. 3 UVA Digital Himalaya Project, University of Virginia, Charlottesville, VA 22904, USA. 4 British
University in Dubai, Dubai, United Arab Emirates. 5 School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK. 6 Toulouse School of Economics
(TSM-Research), Centre National de la Recherche Scientifique, University of Toulouse Capitole, Toulouse 31015, France. 7 The Media Lab, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA. 8Department of Psychology and Social Behavior, University of California, Irvine, CA 92697, USA.
9 Institute for Data, Systems and Society, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Correspondence
and requests for materials should be addressed to J.W.C. (email: crandall@cs.byu.edu) or to I.R. (email: irahwan@mit.edu)

NATURE COMMUNICATIONS | (2018) 9:233 |DOI: 10.1038/s41467-017-02597-8 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-5602-4146
http://orcid.org/0000-0002-5602-4146
http://orcid.org/0000-0002-5602-4146
http://orcid.org/0000-0002-5602-4146
http://orcid.org/0000-0002-5602-4146
http://orcid.org/0000-0003-3141-6159
http://orcid.org/0000-0003-3141-6159
http://orcid.org/0000-0003-3141-6159
http://orcid.org/0000-0003-3141-6159
http://orcid.org/0000-0003-3141-6159
http://orcid.org/0000-0003-3011-5047
http://orcid.org/0000-0003-3011-5047
http://orcid.org/0000-0003-3011-5047
http://orcid.org/0000-0003-3011-5047
http://orcid.org/0000-0003-3011-5047
http://orcid.org/0000-0002-1213-2014
http://orcid.org/0000-0002-1213-2014
http://orcid.org/0000-0002-1213-2014
http://orcid.org/0000-0002-1213-2014
http://orcid.org/0000-0002-1213-2014
http://orcid.org/0000-0002-2489-5705
http://orcid.org/0000-0002-2489-5705
http://orcid.org/0000-0002-2489-5705
http://orcid.org/0000-0002-2489-5705
http://orcid.org/0000-0002-2489-5705
http://orcid.org/0000-0002-1796-4303
http://orcid.org/0000-0002-1796-4303
http://orcid.org/0000-0002-1796-4303
http://orcid.org/0000-0002-1796-4303
http://orcid.org/0000-0002-1796-4303
mailto:crandall@cs.byu.edu
mailto:irahwan@mit.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications

The emergence of driverless cars, autonomous trading algo-
rithms, and autonomous drone technologies highlight a
larger trend in which artificial intelligence (AI) is enabling

machines to autonomously carry out complex tasks on behalf of
their human stakeholders. To effectively represent their stake-
holders in many tasks, these autonomous machines must interact
with other people and machines that do not fully share the same
goals and preferences. While the majority of AI milestones have
focused on developing human-level wherewithal to compete with
people1–6 or to interact with people as teammates that share a
common goal7–9, many scenarios in which AI must interact with
people and other machines are neither zero-sum nor common-
interest interactions. As such, AI must also have the ability to
cooperate even in the midst of conflicting interests and threats of
being exploited. Our goal in this paper is to better understand how
to build AI algorithms that cooperate with people and other
machines at levels that rival human cooperation in arbitrary long-
term relationships modeled as repeated stochastic games (RSGs).

Algorithms capable of forming cooperative long-term rela-
tionships with people and other machines in arbitrary repeated
games are not easy to come by. A successful algorithm should
possess several properties. First, it must not be domain-specific—
it must have superior performance in a wide variety of scenarios
(generality). Second, the algorithm must learn to establish effec-
tive relationships with people and machines without prior
knowledge of associates’ behaviors (flexibility). To do this, it must
be able to deter potentially exploitative behavior from its partner
and, when beneficial, determine how to elicit cooperation from a
(potentially distrustful) partner who might be disinclined to
cooperate. Third, when associating with people, the algorithm
must learn effective behavior within very short timescales—i.e.,
within only a few rounds of interaction (learning speed). These
requirements create many technical challenges (Supplementary
Note 2), including the need to deal with adaptive partners who
may also be learning10,11 and the need to reason over multiple,
potentially infinite, equilibria solutions within the large strategy
spaces inherent of repeated games. The sum of these challenges
often causes AI algorithms to fail to cooperate12, even when doing
so would be beneficial to the algorithm’s long-term payoffs.

Human cooperation does not require sheer computational power,
but is rather facilitated by intuition13, cultural norms14,15, emotions
and signals16,17, and pre-evolved dispositions toward cooperation18.
Of particular note, cheap talk (i.e., costless, non-binding signals) has
been shown to lead to greater human cooperation in repeated
interactions19,20. These prior works suggest that machines may also
rely on such mechanisms, both to deal with the computational
complexities of the problem at hand and to develop shared repre-
sentations with people21–24. However, it has remained unclear how
autonomous machines can emulate these mechanisms in a way that
supports generality, flexibility, and fast learning speeds.

The primary contribution of this work is threefold. First, we
conduct an extensive comparison of existing algorithms for repeated
games. Second, we develop and analyze a learning algorithm that
couples a state-of-the-art machine-learning algorithm (the highest
performing algorithm in our comparisons of algorithms) with
mechanisms for generating and responding to signals at levels
conducive to human understanding. Finally, via extensive simula-
tions and user studies, we show that this learning algorithm learns to
establish and maintain effective relationships with people and other
machines in a wide variety of RSGs at levels that rival human
cooperation, a feat not achieved by prior algorithms. In so doing, we
investigate the algorithmic mechanisms that are responsible for the
algorithm’s success. These results are summarized and discussed in
the next section, and given in full detail in the Supplementary Notes.

Results
Evaluating the state-of-the-art. Over the last several decades,
algorithms for generating strategic behavior in repeated games
have been developed in many disciplines, including economics,
evolutionary biology, and the AI and machine-learning commu-
nities[10–12]25–36. To evaluate the ability of these algorithms to
forge successful relationships, we selected 25 representative
algorithms from these fields, including classical algorithms such
as (generalized) Generous Tit-for-Tat (i.e., Godfather36) and win-
stay-lose-shift (WSLS)27, evolutionarily evolved memory-one and
memory-two stochastic strategies35, machine-learning algorithms
(including reinforcement-learning), belief-based algorithms25,
and expert algorithms32,37. Implementation details used in our
evaluation for each of these algorithms are given in Supplemen-
tary Note 3.

We compared these algorithms with respect to six performance
metrics at three different game lengths: 100-, 1000-, and 50,000-
round games. The first metric was the Round-Robin average,
which was calculated across all games and partner algorithms
(though we also considered subsets of games and partner
algorithms). This metric tests an algorithm’s overall ability to
forge profitable relationships across a range of potential partners.
Second, we computed the best score, which is the percent of
algorithms against which an algorithm had the highest average
payoff compared to all 25 algorithms. This metric evaluates how
often an algorithm would be the desired choice, given knowledge
of the algorithm used by one’s partner. The third metric was the
worst-case score, which is the lowest relative score obtained by
the algorithm. This metric addresses the ability of an algorithm to
bound its losses. Finally, the last three metrics are designed to
evaluate the robustness of algorithms to different populations.
These metrics included the usage rate of the algorithms over
10,000 generations of the replicator dynamic38, and two forms of
elimination tournaments35. Formal definitions of these metrics
and methods for ranking the algorithms with respect to them are
provided in Supplementary Note 3.

As far as we are aware, none of the selected algorithms had
previously been evaluated in this extensive set of games played
against so many different kinds of partners, and against all of
these performance metrics. Hence, this evaluation illustrates how
well these algorithms generalize in two-player normal-form
games, rather than being fine-tuned for specific scenarios.

Results of the evaluation are summarized in Table 1, with more
detailed results and analysis appearing in Supplementary Note 3.
We make two high-level observations here. First, it is interesting
which algorithms were less successful in these evaluations. For
instance, while Generalized Tit-for-Tat (gTFT), WSLS, and
memory-one and memory-two stochastic strategies (e.g., Mem-
1 and Mem-2) are successful in prisoner’s dilemmas, they are not
consistently effective across the full set of 2 × 2 games. These
algorithms are particularly ineffective in longer interactions, as
they do not effectively adapt to their partner’s behavior.
Additionally, algorithms that minimize regret (e.g., Exp329,
GIGA-WoLF39, and WMA40), which is the central component
of world-champion computer poker algorithms4,5, also per-
formed poorly.

Second, while many algorithms had high performance with
respect to some measure, only S++37 was a top-performing
algorithm across all metrics at all game lengths. Furthermore,
results reported in Supplementary Note 3 show that it maintained
this high performance in each class of game and when associating
with each class of algorithm. S++ learns to cooperate with like-
minded partners, exploit weaker competition, and bound its
worst-case performance (Fig. 1a). Perhaps most importantly,

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02597-8

2 NATURE COMMUNICATIONS | (2018) 9:233 |DOI: 10.1038/s41467-017-02597-8 |www.nature.com/naturecommunications

www.nature.com/naturecommunications

whereas many machine-learning algorithms do not forge
cooperative relationships until after thousands of rounds of
interaction (if at all) (e.g. ref. 41), S++ tends to do so within
relatively few rounds of interaction (Fig. 1b), likely fast enough to
support interactions with people.

Given S++’s consistent success when interacting with other
algorithms, we also evaluated its ability to forge cooperative
relationships with people via a user study in which we paired S++
and MBRL-1, a model-based reinforcement-learning algorithm42,
with people in four repeated games. The results of this user study,
summarized in Fig. 2, show that while S++ establishes cooperative
relationships with copies of itself, it does not consistently forge
cooperative relationships with people. Across the four games,
pairings consisting of S++ and a human played the mutually
cooperative solution (i.e., the Nash bargaining solution) in <30%
of rounds. Nevertheless, people likewise failed to consistently
cooperate with each other in these games. See Supplementary
Note 5 for additional details and results.

In summary, none of the 25 existing algorithms we evaluated
establishes effective long-term relationships with both people and
other algorithms.

An algorithm that cooperates with people and other machines.
Prior work has shown that humans rely on costless, non-binding
signals (called cheap talk) to establish cooperative relationships in
repeated games19,20. Thus, we now consider scenarios that permit
such communications. While traditional repeated games do not
provide means for cheap talk, we consider a richer class of
repeated games in which players can engage in cheap talk by
sending messages at the beginning of each round. Consistent with
prior work20, we limited messages to a pre-determined set of
speech acts.

While signaling via cheap talk comes naturally to humans,
prior algorithms designed for repeated games are not equipped

with the ability to generate and respond to such signals. To be
useful in establishing relationships with people in arbitrary
scenarios, costless signals should be connected to actual behavior,
should be communicated at a level conducive to human
understanding, and should be generated by game-independent
mechanisms. The ability to utilize such signals relates to the idea
of explainable AI, which has recently become a grand challenge43.
This challenge arises due to the fact that most machine-learning
algorithms have low-level internal representations that are not
easily understood or expressed at levels that are understandable to
people, especially in arbitrary scenarios. As such, it is not obvious
how machine-learning algorithms can, in addition to prescribing
strategic behavior, generate and respond to costless signals at
levels that people understand in arbitrary scenarios.

Unlike typical machine-learning algorithms, the internal
structure of S++ provides a high-level representation of the
algorithm’s dynamic strategy that can be described in terms of the
dynamics of the underlying experts. Since each expert encodes a
high-level philosophy, S++ can be used to generate signals (i.e.,
cheap talk) that describe its intentionality. Speech acts from its
partner can also be compared to its experts’ philosophies to
improve its expert-selection mechanism. In this way, we
augmented S++ with a communication framework that gives it
the ability to generate and respond to cheap talk.

The resulting new algorithm, dubbed S# (pronounced “S
sharp”), is depicted in Fig. 3; details of S# are provided in
Methods and Supplementary Note 4. In scenarios in which cheap
talk is not possible, S# is identical to S++. When cheap talk is
permitted, S# differs from S++ in that it generates cheap talk that
corresponds to the high-level behavior and state of S++ and uses
the signals spoken by its partner to alter which expert it chooses
to follow in order to more easily coordinate behavior. Since self-
play analysis indicated that both of these mechanisms help
facilitate cooperative relationships (see Supplementary Note 4, in

Table 1 Summary results for our comparison of algorithms

Algorithm Round-Robin
average

% Best
score

Worst-case
score

Replicator
dynamic

Group-1
Tourney

Group-2
Tourney

Rank summary
min–mean–max

S++ 1, 1, 1 2, 1, 2 1, 1, 1 1, 1, 1 1, 1, 2 1, 1, 1 1–1.2–2
Manipulator 3, 2, 3 4, 3, 8 5, 2, 4 6, 4, 3 5, 3, 3 5, 2, 2 2–3.7–8
Bully 3, 2, 1 3, 2, 1 7, 13, 20 7, 3, 2 6, 2, 1 6, 3, 5 1–4.8–20
S++/simple 5, 4, 4 8, 5, 9 4, 6, 10 10, 2, 6 8, 4, 6 9, 4, 6 2–6.1–10
S 5, 5, 8 6, 7, 10 3, 3, 8 5, 5, 8 7, 5, 9 7, 5, 9 3–6.4–10
Fict. play 2, 8, 14 1, 6, 10 2, 8, 16 3, 12, 15 2, 8, 12 4, 9, 14 1–8.1–16
MBRL-1 6, 6, 10 5, 4, 7 8, 7, 14 11, 11, 13 9, 7, 10 8, 7, 10 4–8.5–14
EEE 11, 8, 7 14, 9, 5 9, 4, 2 14, 10, 9 13, 9, 8 13, 10, 8 2–9.1–14
MBRL-2 14, 5, 5 13, 8, 6 19, 5, 3 18, 9, 4 18, 6, 5 18, 6, 4 3–9.2–19
Mem-1 6, 9, 13 7, 10, 21 6, 9, 17 2, 6, 10 3, 10, 17 2, 8, 15 2–9.5–21
M-Qubed 14, 20, 4 15, 20, 3 15, 19, 5 17, 19, 5 17, 21, 4 16, 21, 3 3–13.2–21
Mem-2 9, 11, 20 9, 11, 22 13, 17, 22 4, 13, 19 4, 13, 25 3, 12, 20 3–13.7–25
Manip-Gf 11, 11, 21 12, 12, 19 12, 11, 19 9, 7, 20 12, 14, 20 11, 13, 21 7–14.2–21
WoLF-PHC 17, 11, 13 18, 14, 14 18, 14, 18 16, 14, 14 16, 11, 11 15, 11, 11 11–14.2–18
QL 17, 17, 7 19, 19, 4 17, 18, 7 19, 18, 7 19, 20, 7 19, 18, 7 4–14.4–20
gTFT 11, 14, 22 11, 15, 20 11, 16, 23 8, 8, 22 10, 16, 21 10, 15, 22 8–15.3–23
EEE/simple 20, 15, 11 20, 17, 12 20, 10, 9 20, 16, 11 24, 15, 14 20, 16, 13 9–15.7–24
Exp3 19, 23, 11 16, 23, 15 16, 23, 6 15, 23, 12 15, 25, 13 17, 25, 12 6–17.2–25
CJAL 24, 14, 14 25, 14, 13 24, 12, 15 24, 17, 16 20, 12, 16 22, 14, 16 12–17.3–25
WSLS 9, 17, 24 10, 16, 24 10, 20, 24 12, 20, 24 11, 17, 24 12, 17, 25 9–17.6–25
GIGA-WoLF 14, 19, 23 17, 18, 23 14, 15, 21 13, 15, 23 14, 18, 22 14, 19, 23 13–18.1–23
WMA 21, 21, 15 21, 21, 16 22, 21, 12 22, 21, 17 21, 19, 15 23, 20, 17 12–19.2–23
Stoch. FP 21, 21, 15 22, 22, 17 23, 22, 11 23, 22, 18 25, 24, 18 25, 22, 18 11–20.5–25
Exp3/simple 21, 24, 16 23, 24, 18 21, 24, 13 21, 24, 21 22, 22, 19 21, 23, 19 13–20.9–24
Random 24, 25, 25 24, 25, 25 25, 25, 25 25, 25, 25 23, 23, 23 24, 24, 24 23–24.4–25

This summary gives the relative rank of each algorithm with respect to each of the six performance metrics we considered, at each game length. A lower rank indicates higher performance. For each
metric, the algorithms are ranked in 100-round, 1000-round, and 50,000-round games, respectively. For example, the 3-tuple 3, 2, 1 indicates the algorithm was ranked 3rd, 2nd, and 1st in 100, 1000, and
50,000-round games, respectively. More detailed results and explanations are given in Supplementary Note 3

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02597-8 ARTICLE

NATURE COMMUNICATIONS | (2018) 9:233 |DOI: 10.1038/s41467-017-02597-8 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications

particular Supplementary Figure 12), we anticipated that, in
combination with S++’s ability to learn effective behavior when
paired with both cooperative and devious partners, S#’s signaling
mechanisms could be the impetus for consistently forging
cooperative relationships with people.

We conducted a series of three user studies involving 220
participants, who played in a total of 472 repeated games, to
determine the ability of S# to forge cooperative relationships with
people. The full details of these studies are provided in
Supplementary Notes 5–7. We report representative results from
the final study, in which participants played three representative
repeated games (drawn from distinct payoff families; see Methods
and Supplementary Note 2) via a computer interface that hid
their partner’s identity. In some conditions, players could engage

in cheap talk by sending messages at the beginning of each round
via the computer interface.

The proportion of mutual cooperation achieved by
human–human, human–S#, and S#–S# pairings are shown in
Fig. 4. When cheap talk was not permitted, human–human and
human–S# pairings did not frequently result in cooperative
relationships. However, across all three games, the presence of
cheap talk doubled the proportion of mutual cooperation
experienced by these two pairings. Thus, like people, S# used
cheap talk to greatly enhance its ability to forge cooperative
relationships with humans. Furthermore, while S#’s speech profile
was distinct from that of humans (Fig. 5a), subjective post-
interaction assessments indicate that S# used cheap talk to
promote cooperation as effectively as people (Fig. 5b). In fact,

Self play vs. Humans

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
ro

po
rt

io
n

of
 m

ut
ua

l c
oo

pe
ra

tio
n

MBRL-1
Humans
S++

vs. Humans vs. MBRL-1 vs. S++

–0.4

–0.2

0.0

0.2

0.4

0.6

0.8

S
ta

nd
ar

di
ze

d
pa

yo
ff

a b

Fig. 2 Results from an initial user study. In this study, participants were paired with other people, S++, and MBRL-1 in four different repeated normal-form
games. Each game consisted of 50+ rounds. a The proportion of rounds in which both players cooperated when a player was paired with a partner of like
type (self-play) and with a human. b The standardized payoff, computed as the standardized z-score, obtained by each algorithm when paired with each
partner type. In both plots, error bars show the standard error of the mean. These plots show that while S++ learns to cooperate with a copy of itself, it fails
to consistently forge cooperative relationships with people. There were some variations across games. Details about the user study and results are
provided in Supplementary Note 5

Maxmin
MBRL–1

Bully–L
Bully–F
Fair–L
Fair–F

Bullied–L
Bullied–F
Other–L
Other–F

Maxmin

1–
5

6–
15

16
–3

0

31
–6

0

61
–1

25

12
6–

25
0

50
1–

99
9

25
1–

50
0

1–
5

6–
15

16
–3

0

31
–6

0

61
–1

25

12
6–

25
0

50
1–

99
9

25
1–

50
0

MBRL–1
Bully–L
Bully–F
Fair–L
Fair–F

Bullied–L
Bullied–F
Other–L
Other–F

E
xp

er
ts

S++ vs. S++ S++ vs. Bully

0.00

0.25

0.50

0.75

1.00

Proportion of
rounds used

Rounds

E
xp

er
ts

S++ vs. MBRL-2

Rounds

S vs. MBRL-2

S++

S

M-Qubed

Fictitious play

MBRL-1

Exp3
WoLF-
PHC

Deep-Q

1.0

1.5

2.0

2.5

3.0

1 10 100 1000 10,000

Round (log scale)

A
ve

ra
ge

 p
ay

of
f

a b

Fig. 1 Illustrations of S++’s learning dynamics. a An illustration of S++’s learning dynamics in Chicken, averaged over 50 trials. For ease of exposition, S++’s
experts are categorized into groups (see Supplementary Note 3 for details). Top-left: When (unknowingly) paired with another agent that uses S++, S++
initially tries to bully its partner, but then switches to fair, cooperative experts when attempts to exploit its partner are unsuccessful. Top-right: When
paired with Bully, S++ learns the best response, which is to be bullied, achieved by playing experts MBRL-1, Bully-L, or Bully-F. Bottom-left: S++ quickly
learns to play experts that bully MBRL-2, meaning that it receives higher payoffs than MBRL-2. Bottom-right: on the other hand, algorithm S does not learn
to consistently bully MBRL-2, showing that S++’s pruning rule (see Eq. 1 in Methods) enables it to teach MBRL-2 to accept being bullied, thus producing
high payoffs for S++. b The average per-round payoffs (averaged over 50 trials) of various machine-learning algorithms over time in self-play in a
traditional (0-1-3-5)-prisoner’s dilemma in which mutual cooperation produces a payoff of 3 and mutual defection produces a payoff of 1. Of the machine-
learning algorithms we evaluated, only S++ quickly forms successful relationships with other algorithms across the set of 2 × 2 games

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02597-8

4 NATURE COMMUNICATIONS | (2018) 9:233 |DOI: 10.1038/s41467-017-02597-8 |www.nature.com/naturecommunications

www.nature.com/naturecommunications

many participants were unable to distinguish S# from a human
player (Fig. 5c).

In addition to demonstrating S#’s ability to form cooperative
relationships with people, Fig. 4 also shows that S#–S# pairings
were more successful than either human–human or human–S#

pairings. In fact, S++–S++ pairings (i.e., S#–S# pairings without
the ability to communicate) achieved cooperative relationships as
frequently as human–human and human–S# pairings that were
allowed to communicate via cheap talk (Fig. 4a). Given the ability
to communicate, S#–S# pairings were far more consistent in

1

Compute a set E of experts {ej}
from the game description

e4

e2
e1

e6
e7

e5e3

e4

e6 e6

e2 e1
e6

e7
e5e3

e4

e2 e1
e6

e7
e5e3

A B

A

B

A B

A

B

A B

A

B

2

3 4

65

Partner

a b

1

Compute set Econg (t) of experts
congruent with partner’s signal

Identify experts whose potential
�j(t) meets aspiration level �(t)

Speech-generation mechanism for expert e6

Start s0 s1
s2 s3

s4
s5 s6

s8

s7

Event Explanation
si

Internal state

State transition

Randomization

s

f

d

g

p
u

NUL Auto transition; no input considered
Expert failed to punish guilty partner

Expert punished guilty partner

Partner profited from defection
(guilty)

Partner defected againsts S#

Expert forgives other player

Expert is satisfied with new payoff

Signal Text
0 Do as I say, or l’ll punish you.

I accept your last proposal.

I don’t accept your proposal.

That’s not fair.

I don’t trust you.

Excellent!

Sweet. We are getting rich.

Give me another chance.

Okay. I forgive you.

I’m changing my strategy.

We can both do better than this.

Curse you.

You betrayed me.

You will pay for this!

In your face!

Let’s always play <action pair>.

This round, let’s play <action pair>.

Don’t play <action>.

Let’s alternate between <action
pair>and <action pair>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

<empty>ε

d→r({11,12})

g→
r({11,12})+13

g→
r({11,12})+

13

d→r({11,12})

s→5

g→r({11,12})+13

Input event → output signal (speech)

r(M): randomly pick message from set M

d→r({11,12})

s→5 s→5 s→6s→ε

s→ε

p→ε

p→14 p→
14

+8

NUL→15+0

NUL→15+0

P
ot

en
tia

l �
j(t

)

Prune experts:

Update each expert according to
its own internal representation

Use Alg. S to select expert from E(t)

E(t) = {ej ∈Econg(t) : �j (t) ≥ �(t)}

Update aspiration level:

S

�(t + m) = �(t)�m + R(1–�m)

Congruent

Meet
aspiration

Follow selected expert for
m rounds

e3e2e1 e4 e5 e6 e7

Partner

Round t Round t+m–

...

Go to
step 2

Partner

�(t)

e4

e2 e1
e6

e7 e6e5e3

Fig. 3 An overview of S#. S# extends S++37 with the ability to generate and respond to cheap talk. a S#’s algorithmic steps. Prior to any interaction, S#
uses the description of the game to compute a set E of expert strategies (step 1). Each expert encodes a strategy or learning algorithm that defines both
behavior and speech acts (cheap talk) over all game states. In step 2, S# computes the potential, or highest expected utility, of each expert in E. The
potentials are then compared to an aspiration level α(t), which encodes the average per-round payoff that the algorithm believes is achievable, to
determine a set of experts that could potentially meet its aspiration. In step 3, S# determines that experts carry out plans that are congruent with its
partner’s last proposed plan. Next, in step 4, S# selects an expert, using algorithm S34,60, from among those experts that both potentially meet its
aspiration (step 2) and are congruent with its partner’s latest proposal (step 3). If E(t) is empty, S# selects its expert from among those experts that meet
its aspiration (step 2). The currently selected expert generates signals (speech from a pre-determined set of speech acts) based on its game-generic state
machine b. In step 5, S# follows the strategy dictated by the selected expert for m rounds of the repeated game. Finally, in step 6, S# updates its aspiration
level based on the average reward R it has received over the last m rounds of the game. It also updates its experts according to each expert’s internal
representation. It then returns to step 2 and repeats the process for the duration of the repeated game. b An example speech-generation mechanism for an
expert that seeks to teach its partner to play a fair, pareto-optimal strategy. For each expert, speech is generated using a state machine (specifically, a
Mealy machine70), in which the algorithm’s states are the nodes, algorithmic events create transitions between nodes, and speech acts define the outputs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No Yes

Cheap talk?

P
ro

po
rt

io
n

of
 m

ut
ua

l c
oo

pe
ra

tio
n

Human–human Human–S# S#–S#

Human–Human Human–S# S#–S#

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

A
lte

rn
at

or
 g

am
e

C
hi

ck
en

P
ris

on
er

's
 d

ile
m

m
a

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Round

P
ro

po
rt

io
n

of
 m

ut
ua

l c
oo

pe
ra

tio
n

Cheap talk? No Yes
a b

Fig. 4 Proportion of mutual cooperation achieved in the culminating user study. In this study, 66 volunteer participants were paired with each other and S# in
three representative games (Chicken, Alternator Game, and Prisoner’s Dilemma). Results are shown for when cheap talk was both permitted and not permitted.
Note that S# is identical to S++ when cheap talk is not permitted. a The proportion of rounds in which both players cooperated over all rounds and all games. b
The proportion of time in which both players cooperated over all games. Bars and lines show average values over all trials, while error bars and ribbons show the
standard error of the mean. A full statistical analysis confirming the observations shown in this figure are provided in Supplementary Note 7

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02597-8 ARTICLE

NATURE COMMUNICATIONS | (2018) 9:233 |DOI: 10.1038/s41467-017-02597-8 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications

forging cooperative relationships than both human–human and
human–S# pairings.

Together, these results illustrate that, across the games studied,
the combined behavioral and signaling strategies of S# were at
least as effective as those of human players.

Repeated stochastic games. While the previous results apper-
tained to normal-form games, S++ is also effective in more
complex scenarios44. This facilitates an extension of S# to these
more complex games. Because normal-form games capture the
essence of the dilemmas faced by people in repeated interactions,
they have been used to study cooperation for decades in the fields
of behavioral economics45, mathematical biology46, psychology47,
sociology48, computer science36, and political science26. However,
such scenarios abstract away some complexities of real-world
interactions. Thus, we also consider the more general class of
RSGs, which require players to reason over sequences of moves in
each round, rather than the single-move rounds of normal-form
games.

To generate and respond to signals in RSGs, S# uses the same
mechanisms as it does in normal-form games with one exception.
In normal-form games, joint plans for a round can be
communicated by specifying a joint action. However, in RSGs,
plans are often more complex as they involve a series of joint
actions that would not typically be used in human communica-
tion. In such cases, S# instead communicates plans with higher-
level terms such as “Let’s cooperate” or “I get the higher payoff,”
and then relies on its partner to infer the specifics of the proposed
joint strategy. See Methods for details.

Our results for RSGs are similar to those of normal-form games.
While S++ does not typically forge effective relationships with
people in these more complex scenarios, our results show that S#-,
an early version of S# that generated cheap talk but did not
respond to the cheap talk of others, is more successful at doing so.
For example, Fig. 6 shows results for a turning-taking scenario in
which two players must learn how to share a set of blocks. Like
people, S#- used cheap talk to substantially increase its payoffs
when associating with people in this game (Fig. 6b). Though S#-
was limited by its inability to respond to the cheap talk of others
(Supplementary Note 4; see, in particular, Supplementary
Table 12), this result mirrors those we observed in normal-form
games. (Supplementary Note 6 contains additional details and
results.) This illustrates that S# can also be used in more complex
scenarios to forge cooperative relationships with people.

Distinguishing algorithmic mechanisms. Why is S# so successful
in forging cooperative relationships with both people and other
algorithms? Are its algorithmic mechanisms fundamentally differ-
ent from those of other algorithms for repeated games? We have
identified three algorithmic mechanisms responsible for S#’s suc-
cess. Clearly, Figs. 4, 5, 6 demonstrate that the first of these
mechanisms is S#’s ability to generate and respond to relevant
signals that people can understand, a trait not present in previous
learning algorithms designed for repeated interactions. These sig-
naling capabilities expand S#’s flexibility in that they also allow S#
to more consistently forge cooperative relationships with people.
Without this capability, it does not consistently do so. Figure 7a
demonstrates one simple reason that this mechanism is so impor-
tant: cheap talk helps both S# and humans to more quickly develop
a pattern of mutual cooperation with their partners. Thus, the
ability to generate and respond to signals at a level conducive to
human understanding is a critical algorithmic mechanism.

Second, S# uses a rich set of expert strategies that includes a
variety of equilibrium strategies and even a simple learning
algorithm. While none of these individual experts has an overly
complex representation (e.g., no expert remembers the full history
of play), these experts are more sophisticated than those
traditionally considered (though not explicitly excluded) in the
discussion of expert algorithms29,39,40. This more sophisticated
set of experts permits S# to adapt to a variety of partners and
game types, whereas algorithms that rely on a single strategy or a
less sophisticated set of experts are only successful in particular
kinds of games played with particular partners49 (Fig. 7c). Thus,
in general, simplifying S# by removing experts from this set will
tend to limit the algorithm’s flexibility and generality, though
doing so will not always negatively impact its performance when
paired with particular partners in particular games.

Finally, the somewhat non-conventional expert-selection
mechanism used by S# (see Eq. 1 in Methods) is central to its
success. While techniques such as ε-greedy exploration (e.g.,
EEE32) and regret-matching (e,g., Exp329) have permeated
algorithm development in the AI community, S# instead uses
an expert-selection mechanism closely aligned with recognition-
primed decision-making50. Given the same full, rich set of
experts, more traditional expert-selection mechanisms establish
effective relationships in far fewer scenarios than S# (Fig. 7c).
Figure 7 provides insights into why this is so. Compared to the
other expert-selection mechanisms, S# has a greater combined
ability to quickly establish a cooperative relationship with its
partner (Fig. 7a) and then to maintain it (Fig. 7b), a condition

0
2
4
6
8

10
12
14

Hate Threats Manage
relationship

Message type

Praise Planning

T
im

es
 u

se
d

pe
r

ga
m

e

Player Humans S#

1

2

3

4

5

Intelligence Clear
intent?

Useful
signals?

S
ub

je
ct

iv
e

ra
tin

g

Partner Human S#

0
10
20
30
40
50
60
70
80
90

100

No Yes

Cheap talk?

%
 T

ho
ug

ht
 to

 b
e

hu
m

an

Partner Human S#a b c

Fig. 5 Explanatory results from the culminating user study. a The speech profiles of participants and S#, which shows the average number of times that
people and S# used messages of each type (see Supplementary Note 7 for message classification) over the course of an interaction when paired with
people across all games. Statistical tests confirm that S# sent significantly more Hate and Threat messages, while people sent more praise messages. b
Results of three post-experiment questions for subjects that experienced the condition in which cheap talk was permitted. Participants rated the
intelligence of their partner (Intelligence), the clarity of their partner’s intentions (Clear intent?), and the usefulness of the communication between them
and their partner (Useful signals?). Answers were given on a 5-point Likert scale. Statistical analysis did not detect any significant differences in the way
users rated S# and human partners. c The percentage of time that human participants and S# were thought to be human by their partner. Statistical
analysis did not detect any difference in the rates at which S# and humans were judged to be human. Further details along with the statistical analysis for
each of these results are provided in Supplementary Note 7

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02597-8

6 NATURE COMMUNICATIONS | (2018) 9:233 |DOI: 10.1038/s41467-017-02597-8 |www.nature.com/naturecommunications

www.nature.com/naturecommunications

brought about by S#’s tendency to not deviate from cooperation
after mutual cooperation has been established (i.e., loyalty).

The loyalty brought about by S#’s expert-selection mechanism
helps explain why S#–S# pairings substantially outperformed
human–human pairings in our study (Fig. 4). S#’s superior
performance can be attributed to two human tendencies. First,
while S# did not typically deviate from cooperation after
successive rounds of mutual cooperation (Fig. 7b), many human
players did. Almost universally, such deviations led to reduced
payoffs to the deviator. Second, as in human–human interactions
observed in other studies51, a sizable portion of our participants
failed to keep some of their verbal commitments. On the other

hand, since S#’s verbal commitments are derived from its
intended future behavior, it typically carries out the plans it
proposes. Had participants followed S#’s strategy in these two
regards (and all other behavior by the players had remained
unchanged), human–human pairings could have performed
nearly as well, on average, as S#–S# pairings (Fig. 8; see
Supplementary Note 7 for details).

Discussion
Our studies of human–S# partnerships were limited to five
repeated games, selected carefully to represent different classes of

… …

… ……

… … … …

(i) Fair, but inefficient:
 Player 1 = 18 pts
 Player 2 = 18 pts

(iii) Fight!
 Player 1 = –29/4 pts
 Player 2 = –17/4 pts
No one has a valid set

(v) Punishment:
Player 1 retaliates,
ensuring player 2 cannot
get a valid set

(iv) Defection:
Player 2 denies player
1 maximum points,
and tries to get a better set

(ii) Unequal outcome:
 Player 1 = 40 pts
 Player 2 = 10 pts

 but fair and efficient if
players take turns

Block values

3 1 0

121315

3 25

Valid sets (examples shown)

All same shape

All same color

All different
shape & color

Game state

Remaining
blocks

Player 1’s blocks

Player 2’s blocks

Player 1
moves

Player 2
moves

Player 1
moves

Player 2
moves

Player 1
moves

Player 2
moves

Humans vs. Humans S#– vs. Humans

0 10 20 30 40 50 0 10 20 30 40 50

5

10

15

20

25

30

Round

A
ve

ra
ge

 p
ay

of
f

Cheap talk? No Yes

a

b

Humans vs. humans S#– vs. humans

Fig. 6 Results in a repeated stochastic game called the Block Game. a A partial view of a single round of the Block Game in which two players share a nine-
piece block set. The two players take turns selecting blocks from the set until each has three blocks. The goal of each player is to get a valid set of blocks
with the highest point value possible, where the value of a set is determined by the sum of the numbers on the blocks. Invalid sets receive negative points.
The figure depicts five different potential outcomes for each round of the game, ranging from dysfunctional payoffs to outcomes in which one or both
players benefit. The mutually cooperative (Nash bargaining) solution occurs when players take turns getting the highest quality set of three blocks (all the
squares). b Average payoffs obtained by people and S#– (an early version of S# that generates, but does not respond to, cheap talk) when associating with
people in the Block Game. Error ribbons show the standard error of the mean. As in normal-form games, S#– successfully uses cheap talk to consistently
forge cooperative relationships with people in this repeated stochastic game. For more details, see Supplementary Note 6

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02597-8 ARTICLE

NATURE COMMUNICATIONS | (2018) 9:233 |DOI: 10.1038/s41467-017-02597-8 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications

games from the periodic table of games (Supplementary Note 2).
These games also included normal-form games as well as richer
forms of RSGs. Though future work should address more sce-
narios, S#’s success in establishing cooperative relationships with
people in these representative games, along with its consistently
high performance across all classes of 2 × 2 games and various
RSGs44 when associating with other algorithms, gives us some
confidence that these results will generalize to other scenarios.

This paper focused on the development and analysis of algo-
rithmic mechanisms that allow learning algorithms to forge
cooperative relationships with both people and other algorithms
in two-player RSGs played with perfect information. This class of
games encompasses a vast majority of cooperation problems

studied in psychology, economics, and political science. However,
while the class of RSGs is quite general and challenging in and of
itself, future work should focus on developing algorithms that can
effectively cooperate with people and other algorithms in even
more complex scenarios52, including multi-player repeated
games, repeated games with imperfect information, and scenarios
in which the players possibly face a different payoff function in
each round. We believe that principles and algorithmic
mechanisms identified and developed in this work will help
inform the development of algorithms that cooperate with people
in these (even more challenging) scenarios.

Since Alan Turing envisioned AI, major milestones have often
focused on either defeating humans in zero-sum encounters1–6,
or to interact with people as teammates that share a common
goal7–9. However, in many scenarios, successful machines must
cooperate with, rather than compete against, humans and other
machines, even in the midst of conflicting interests and threats of
being exploited. Our work demonstrates how autonomous
machines can learn to establish cooperative relationships with
people and other machines in repeated interactions. We showed
that human–machine and machine–machine cooperation is
achievable using a non-trivial, but ultimately simple, set of
algorithmic mechanisms. These mechanisms include computing a
variety of expert strategies optimized for various scenarios, a
particular meta-strategy for selecting experts to follow, and the
ability to generate and respond to costless, non-binding signals
(called cheap talk) at levels conducive to human understanding.
We hope that this extensive demonstration of human cooperation
with autonomous machines in repeated games will spur sig-
nificant further research that will ensure that autonomous
machines, designed to carry out human endeavors, will cooperate
with humanity.

Methods
Games for studying cooperation. We describe the benchmark of games used in
our studies, provide an overview of S++, and describe S# in more detail. Details that
are informative but not essential to gaining an understanding of the main results of
the paper are provided in the Supplementary Notes. We begin with a discussion
about games for benchmarking cooperation.

We study cooperation between people and algorithms in long-term
relationships (rather than one-shot settings53) in which the players do not share all

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50

Rounds elapsed since
the beginning of the interaction

%
 E

xp
er

ie
nc

ed
m

ut
ua

l c
oo

pe
ra

tio
n

Pairing

EEE–EEE
Exp3–Exp3
Human–human
Human–S#
S–S
S#–S#

Cheap talk?
No
Yes

S++/S#
(full experts)

S (full experts)

EEE (full experts)

Exp3 (full experts)

MBRL-1
(single expert)

Bully (single expert)

gTFT
(single expert)

S++/S#
(simple experts)

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 10
0

Flexibility (% of partners)

G
en

er
al

ilt
y

(%
 o

f g
am

e
ty

pe
s)

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20

Rounds elapsed since mutual
cooperation was experienced

%
 M

ai
nt

ai
ne

d
m

ut
ua

l
co

op
er

at
io

n

a b c

Fig. 7 Comparisons of people and algorithms with respect to various characteristics. a Empirically generated cumulative-distribution functions describing
the number of rounds required for pairings to experience two consecutive rounds of mutual cooperation across three games (Chicken, Alternator Game,
and Prisoner’s Dilemma). Per-game results are provided in Supplementary Note 7. For machine–machine pairings, the results are obtained from 50 trials
conducted in each game, whereas pairings with humans use results from a total of 36 different pairings each. b The percentage of partnerships for each
pairing that did not deviate from mutual cooperation once the players experienced two consecutive rounds of mutual cooperation across the same three
repeated games. c A comparison of algorithms with respect to the ability to form profitable relationships across different games (Generality) and with
different associates (Flexibility). Generality was computed as the percentage of game types (defined by payoff family × game length) for which an
algorithm obtained the highest or second highest average payoffs compared to all 25 algorithms tested. Flexibility was computed as the percentage of
associates against which an algorithm had the highest or second highest average payoff compared to all algorithms tested. See Supplementary Note 3 for
details about each metric

No cheap talk With cheap talk

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

H
um

an
−

hu
m

an

S
#−

hu
m

an

S
#−

S
#

H
um

an
−

hu
m

an

S
#−

hu
m

an

S
#−

S
#

Pairing

P
ro

po
rt

io
n

of
 m

ut
ua

l c
oo

pe
ra

tio
n

Actual Loyal+honest

Fig. 8 The estimated impact of honesty and loyalty. The estimated
proportion of rounds that could have resulted in mutual cooperation had all
human players followed S#’s learned behavioral and signaling strategies of
not deviating from cooperative behavior when mutual cooperation was
established (i.e., Loyal) and keeping verbal commitments (i.e., Honest), and
all other behavior from the players remained unchanged. See
Supplementary Note 7 for details of methods used. Error bars show the
standard error of the mean

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02597-8

8 NATURE COMMUNICATIONS | (2018) 9:233 |DOI: 10.1038/s41467-017-02597-8 |www.nature.com/naturecommunications

www.nature.com/naturecommunications

the same preferences. In this paper, we model these interactions as RSGs. An RSG,
played by players i and −i, consists of a set of rounds. In each round, the players
engage in a sequence of stage games drawn from the set of stage games S. In each
stage s ∈ S, both players choose an action from a finite set. Let A(s) = Ai(s) ×A−i(s)
be the set of joint actions available in stage s, where Ai (s) and A−i (S) are the action
sets of players i and −i, respectively. Each player simultaneously selects an action
from its set of actions. Once joint action a = (ai, a−i) is played in stage s, each player
receives a finite reward, denoted ri (s, a) and r−i (s, a), respectively. The world also
transitions to some new stage s′ with probability defined by PM (s, a, s′). Each round
of an RSG begins in the start stage ŝ 2 S and terminates when some goal stage
sg 2 G � S is reached. A new round then begins in stage ŝ. The game repeats for an
unknown number of rounds. In this work, we assume perfect information.

Real-world interactions often permit cheap talk, in which players send non-
binding, costless signals to each other before taking actions. In this paper, we add
cheap talk to repeated games by allowing each player, at the beginning of each
round, to send a set of messages (selected from a pre-determined set of speech acts
M) prior to acting in that round. Formally, let PðMÞ denote the power set of M,
and let miðtÞ 2 PðMÞ be the set of messages sent by player i prior to round t. Only
after sending the message mi(t) can player i view the message m−1(t) (sent by its
partner) and vice versa.

As with all historical grand challenges in AI, it is important to identify a class of
benchmark problems to compare the performance of different algorithms. When it
comes to human cooperation, a fundamental benchmark has been 2 × 2, general-
sum, repeated games54. This class of games has been a workhorse for decades in the
fields of behavioral economics45, mathematical biology45, psychology46 sociology47,
computer science36, and political science26. These fields have revealed many aspects
of human cooperative behavior through canonical games, such as Prisoner’s
Dilemmas, Chicken, Battle of the Sexes, and the Stag Hunt. Such games, therefore,
provide a well-established, extensively studied, and widely understood benchmark
for studying the capabilities of machines to develop cooperative relationships.

Thus, for foundational purposes, we initially focus on two-player, two-action
normal-form games, or RSGs with a single stage (i.e., |S| = 1). This allows us to fully
enumerate the problem domain under the assumption that payoff functions follow
strict ordinal preference orderings. The periodic table of 2 × 2 games54–58 (see
Supplementary Figure 1 along with Supplementary Note 2) identifies and
categorizes 144 unique game structures that present many unique scenarios in
which machines may need to cooperate. We use this set of game structures as a
benchmark against which to compare the abilities of algorithms to cooperate.
Successful algorithms should forge successful relationships with both people and
machines across all of these repeated games. In particular, we can use these games
to quantify the abilities of various state-of-the-art machine-learning algorithms to
satisfy the properties advocated in the introduction: generality across games,
flexibility across opponent types (including humans), and speed of learning.

Though we initially focus on normal-form RSGs, we are interested in
algorithms that can be used in more general settings, such as RSGs in which |S| > 1.
These games require players to reason over multiple actions in each round. Thus,
we also study the algorithms in a set of such games, including the Block Game
shown in Fig. 6a. Additional results are reported in Supplementary Note 6.

The search for metrics that properly evaluate successful behavior in repeated
games has a long history, for which we refer the reader to Supplementary Note 2. In
this paper, we focus on two metrics of success: empirical performance and
proportion of mutual cooperation. Ultimately, the success of a player in an RSG is
measured by the sum of the payoffs the player receives over the duration of the
game. A successful algorithm should have high empirical performance across a
broad range of games when paired with many different kinds of partners. However,
since the level of mutual cooperation (i.e., how often both players cooperate with
each other) often highly correlates with a player’s empirical performance26, the
ability to establish cooperative relationships is a key attribute of successful
algorithms. However, we do not consider mutual cooperation as a substitute for
high empirical performance, but rather as a supporting factor.

The term “cooperation” has specific meaning in well-known games such as the
Prisoner’s Dilemma. In other games, the term is much more nebulous.
Furthermore, mutual cooperation can be achieved in degrees; it is usually not an all
or nothing event. However, for simplicity in this work, we define mutual
cooperation as the Nash bargaining solution of the game59, defined as the unique
solution that maximizes the product of the players’ payoffs minus their maximin
values. Supplementary Table 4 specifies the Nash bargaining solutions for the
games used in our user studies. Interestingly, the proportion of rounds that players
played mutually cooperative solutions (as defined by this measure) was strongly
correlated with the payoffs a player received in our user studies. For example, in
our third user study, the correlation between payoffs received and proportion of
mutual cooperation was r (572)=0.909.

Overview of S++. S# is derived from S++37,44, an expert algorithm that combines
and builds on decades of research in computer science, economics, and the
behavioral and social sciences. Since understanding S++ is key to understanding S#,
we first overview S++.

S++ is defined by a method for computing a set of experts for arbitrary RSGs
and a method for choosing which expert to follow in each round (called the expert-
selection mechanism). Given a set of experts, S++’s expert-selection mechanism
uses a meta-level control strategy based on aspiration learning34,60,61 to

dynamically prune the set of experts it considers following in a round. Formally, let
E denote the set of experts computed by S++. In each epoch (beginning in round t),
S++ computes the potential ρj(t) of each expert ej ∈ E, and compares this potential
with its aspiration level α(t) to form the reduced set E(t) of experts:

EðtÞ ¼ fej 2 E : ρjðtÞ � αðtÞg: ð1Þ

This reduced set consists of the experts that S++ believes could potentially
produce satisfactory payoffs. It then selects one expert esel(t) ∈ E(t) using a
satisficing decision rule34,60. Over the next m rounds, it follows the strategy
prescribed by esel(t). After these m rounds, it updates its aspiration level as follows:

αðt þmÞ λmαðtÞ þ ð1� λmÞR; ð2Þ

where λ ∈ (0, 1) is the learning rate and R is the average payoff S++ obtained in the
last m rounds. It also updates each expert ej ∈ E based on its peculiar reasoning
mechanism. A new epoch then begins.

S++ uses the description of the game environment to compute a diverse set of
experts. Each expert uses distinct mathematics and assumptions to produce a
strategy over the entire space of the game. The set of experts used in the
implementation of S++ used in our user studies includes five expectant followers,
five trigger strategies, a preventative strategy44, the maximin strategy, and a model-
based reinforcement learner (MBRL-1). For illustrative purposes relevant to the
description of S#, we overview how the expectant followers and trigger strategies
are computed.

Both trigger strategies and expectant followers (which are identical to trigger
strategies except that they omit the punishment phase of the strategy) are defined
by a joint strategy computed over all stages of the RSG. Thus, to create a set of such
strategies, S++ first computes a set of pareto-optimal joint strategies, each of which
offers a different compromise between the players. This is done by solving Markov
decision processes (MDPs) over the joint-action space of the RSG. These MDPs are
defined by A, S, and PM of the RSG, as well as a payoff function defined as a convex
combination of the players’ payoffs62:

yωðs; aÞ ¼ ωriðs; aÞ þ ð1� ωÞr�iðs; aÞ; ð3Þ

where ω ∈ [0, 1]. Then, the value of joint-action a in state s is

Qωðs; aÞ ¼ yωðs; aÞ þ
X

s′2S
PMðs; a; s′ÞVωðs′Þ; ð4Þ

where VωðsÞ ¼ maxa2AðsÞ Qωðs; aÞ. The MDP can be solved in polynomial time
using linear programming63.

By solving MDPs of this form for multiple values of ω, S++ computes a variety
of possible pareto-optimal62 joint strategies. We call the resulting solutions “pure
solutions.” These joint strategies produce joint payoff profiles. Let MDP(ω) denote
the joint strategy produced by solving an MDP for a particular ω. Also, let Vω

i ðsÞ be
player i’s expected future payoff from stage s when MDP(ω) is followed. Then, the
ordered pair Vω

i ð̂sÞ;Vω
�i ð̂sÞ

� �
is the joint payoff vector for the joint strategy defined

by MDP(ω). Additional solutions, or “alternating solutions,” are obtained by
alternating across rounds between different pure solutions. Since longer cycles are
difficult for a partner to model, S++ only includes cycles of length two.

Applying this technique to a 0-1-3-5 Prisoner’s Dilemma produces the joint
payoffs depicted in Fig. 9a. Notably, MDP(0.1), MDP(0.5), and MDP(0.9) produce
the joint payoffs (0, 5), (3, 3), and (5, 0), respectively. Alternating between these
solutions produces three other solutions whose (average) payoff profiles are also
shown. These joint payoffs reflect different compromises, of varying degrees of
fairness, that the two players could possibly agree upon.

Regardless of the structure of the RSG, including whether it is simple or
complex, this technique produces a set of potential compromises available in the
game. For example, Fig. 9b shows potential solutions computed for a two-player
micro-grid scenario44 (with asymmetric payoffs) in which players must share
energy resources. Despite the differences in the dynamics of the Prisoner’s
Dilemma and this micro-grid scenario, these games have similar sets of potential
compromises. As such, in each game, S++ must learn which of these compromises
to play, including whether to make fair compromises, or compromises that benefit
one player over the other (when they exist). These game-independent similarities
can be exploited by S# to provide signaling capabilities that can be used in arbitrary
RSG’s, an observation we exploited to develop S#’s signaling mechanisms (see the
next subsection for details).

The implementation of S++ used in our user studies selects five of these
compromises, selected to reflect a range of different compromises. They include the
solution most resembling the game’s egalitarian solution62, and the two solutions
that maximize each player’s payoff subject to the other player receiving at least its
maximin value (if such solutions exist). The other two solutions are selected to
maximize the Euclidean distance between the payoff profiles of selected solutions. The
five selected solutions form five expectant followers (which simply repeatedly follow
the computed strategy) and five trigger strategies. For the trigger strategies, the
selected solutions constitute the offers. The punishment phase is the strategy that
minimizes the partner’s maximum expected payoff, which is played after the partner
deviates from the offer until the sum of its partner’s payoffs (from the time of the

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02597-8 ARTICLE

NATURE COMMUNICATIONS | (2018) 9:233 |DOI: 10.1038/s41467-017-02597-8 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications

deviation) are below what it would have obtained had it not deviated from the offer.
This makes following the offer of the trigger strategy the partner’s optimal strategy.

The resulting set of experts available to S++ generalizes many popular strategies
that have been studied in past work. For example, for prisoner’s dilemmas, the
computed trigger strategies include Generous Tit-for-Tat and other strategies that
resemble zero-determinant strategies64 (e.g., Bully65). Furthermore, computed
expectant followers include Always Cooperate, while the expert MBRL-1 quickly
learns the strategy Always Defect when paired with a partner that always cooperates.
In short, the set of strategies (generalized to the game being played) available for S++
to follow give it the flexibility to effectively adapt to many different kinds of partners.

Description of S#. S# builds on S++ in two ways. First, it generates speech acts to
try to influence its partner’s behavior. Second, it uses its partner’s speech acts to
make more informed choices regarding which experts to follow.

Signaling to its partner: S#’s signaling mechanism was designed with three
properties in mind: game independence, fidelity between signals and actions, and
human understandability (i.e., the signals should be communicated at a level
conducive to human understanding). One way to do this is to base signal
generation on game-independent, high-level ideals rather than game-specific
attributes. Example ideals include proficiency assessment10,27,61,66, fairness67,68,
behavioral expectations25, and punishment and forgiveness26,69. These ideals
package well-established concepts of interaction in terms people are familiar with.

Not coincidentally, S++’s internal state and algorithmic mechanisms are largely
defined in terms of these high-level ideals. First, S++’s decision-making is governed
by proficiency assessment. It continually evaluating its own proficiency and that of
its experts by comparing its aspiration level (Eq. 2), which encodes performance
expectations, with its actual and potential performance (see descriptions of
traditional aspiration learning34,60,61 and Eq. 1). S# also evaluates its partner’s
performance against the performance it expects it partner to have. Second, the
array of compromises computed for expectant followers and trigger strategies
encode various degrees of fairness. As such, these experts can be defined and even
referred to by references to fairness. Third, strategies encoded by expectant
followers and trigger strategies define expectations for how the agent and its
partner should behave. Finally, transitions between the offer and punishment
phases of trigger strategies define punishment and forgiveness.

The cheap talk generated by S# is based not on the individual attributes of the
game, but rather on events taken in context of these five game-independent
principles (as they are encoded in S++). Specifically, S# automatically computes a
finite-state machine (FSM) with output (specifically, a Mealy machine70) for each
expert. The states and transitions in the state machine are defined by proficiency
assessments, behavioral expectations, and (in the case of experts encoding trigger
strategies) punishment and forgiveness. The outputs of each FSM are speech acts
that correspond to the various events and that also refer to the fairness of outcomes
and potential outcomes.

For example, consider the FSM with output for a trigger strategy that offers a
pure solution, which is shown in Fig. 3b. States s0 – s6 are states in which S# has
expectations that its partner will conform with the trigger strategy’s offer. Initially
(when transitioning from state s0 to s1), S# voices these behavioral expectations
(speech act #15), along with a threat that if these expectations are not met, it will
punish its partner (speech act #0). If these expectations are met (event labeled s), S#
praises its partner (speech acts #5–6). On the other hand, when behavioral
expectations are not met (events labeled d and g), S# voices its dissatisfaction with
its partner (speech acts #11–12). If S# determines that its partner has benefitted
from the deviation (proficiency assessment), the expert transitions to state s7, while
telling its partner that it will punish him (speech act #13). S# stays in this

punishment phase and voices pleasure in reducing its partner’s payoffs (speech act
#14) until the punishment phase is complete. It then transitions out of the
punishment phase (into state s8) and expresses that it forgives its partner, and then
returns to states in which it renews behavioral expectations for its partner.

FSMs for other kinds of experts along with specific details for generating them,
are given in Supplementary Note 4.

Because S#’s speech generation is based on game-independent principles, the
FSMs for speech generation are the same for complex RSGs as they are for simple
(normal-form) RSGs. The exception to this statement is the expression of
behavioral expectations, which are expressed in normal-form games simply as
sequences of joint actions. However, more complex RSGs (such as the Block Game;
Fig. 6) have more complex joint strategies that are not as easily expressed in a
generic way that people understand. In these cases, S# uses game-invariant
descriptions of fairness to specify solutions, and then depends on its partner to
infer the details. It refers to a solution in which players get similar payoffs as a
“cooperative” or “fair” solution, and a solution in which one player scores higher
than the other as a solution in which “you (or I) get the higher payoff.”While not as
specific, our results demonstrate that such expressions can be sufficient to
communicate behavioral expectations.

While signaling via cheap talk has great potential to increase cooperation,
honestly signaling one’s internal states exposes a player to the potential of being
exploited. Furthermore, the so-called silent treatment is often used by humans as a
means of punishment and an expression of displeasure. For these two reasons, S#
also chooses not to speak when its proposals are repeatedly not followed by its
partner. The method describing how S# determines whether or not to voice speech
acts is described in Supplementary Note 4.

In short, S# essentially voices the stream of consciousness of its internal
decision-making mechanisms, which are tied to the aforementioned game-
independent principles. Since these principles also tend to be understandable to
humans and are present in all forms of RSGs, S#’s signal-generation mechanism
tends to achieve the three properties we desired to satisfy: game independence,
fidelity between signals and actions, and human understandability.

Responding to its partner: In addition to voicing cheap talk, the ability to
respond to a partner’s signals can substantially enhance one’s ability to quickly
coordinating on cooperative solutions (see Supplementary Note 4, including
Supplementary Table 12). When its partner signals a desire to play a particular
solution, S# uses proficiency assessment to determine whether it should consider
playing it. If this assessment indicates that the proposed solution could be a
desirable outcome to S#, it determines which of its experts play strategies consistent
(or congruent) with the proposed solution to further reduce the set of experts that
it considers following in that round (step 3 in Fig. 3a). Formally, let Econg (t) denote
the set of experts in round t that are congruent with the last joint plan proposed by
S#’s partner. Then, S# considers selecting experts from the set defined as:

EðtÞ ¼ fej 2 EcongðtÞ : ρjðtÞ � αðtÞg: ð5Þ

If this set is empty (i.e., no desirable options are congruent with the partner’s
proposal), E(t) is calculated as with S++ (Eq. 1).

The congruence of the partner’s proposed plan with an expert is determined by
comparing the strategy proposed by the partner with the solution espoused by the
expert. In the case of trigger strategies and expectant followers, we compare the
strategy proposed by the partner with the strategies’ offer. This is done rather easily
in normal-form games, as the partner can easily and naturally express its strategy as
a sequence of joint actions, which is then compared to the sequence of joint actions
of the expert’s offer. For general RSGs, however, this is more difficult because a

0 10 20 30 40 50 60

0

10

20

30

40

50

60

Payoffs to player 1

P
ay

of
fs

 to
 p

la
ye

r
2

Pure solutions
Alternating solutions
Maximin values
One-shot NE

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Payoffs to player 1

P
ay

of
fs

 to
 p

la
ye

r
2

a b

Fig. 9 Target solutions computed by S++. The x’s and o’s are the joint payoffs of possible target solutions computed by S++. Though games vary widely, the
possible target solutions computed by S++ in each game represent a range of different compromises, of varying degrees of fairness, that the two players
could possibly agree upon. For example, tradeoffs in solution quality are similar for a a 0-1-3-5 Prisoner’s Dilemma and b a more complex micro-grid
scenario44. Solutions marked in red are selected by S++ as target solutions

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02597-8

10 NATURE COMMUNICATIONS | (2018) 9:233 |DOI: 10.1038/s41467-017-02597-8 |www.nature.com/naturecommunications

www.nature.com/naturecommunications

joint action is viewed as a sequence of joint strategies over many stages. In this case,
S# must rely on high-level descriptions of the solution. For example, solutions
described as “fair” and “cooperative” can be assumed to be congruent with solutions
that have payoff profiles similar to those of the Nash bargaining solution.

Listening to its partner can potentially expose S# to being exploited. For
example, in a (0-1-3-5)-Prisoner’s Dilemma, a partner could continually propose
that both players cooperate, a proposal S# would continually accept and act on
when αti � 3. However, if the partner did not follow through with its proposal, it
could potentially exploit S# to some degree for a period of time. To avoid this, S#
listens to its partner less frequently the more the partner fails to follow through
with its own proposals. The method describing how S# determines whether or not
to listen to its partner is described in Supplementary Note 4.

User studies and statistical analysis. Three user studies were conducted as part
of this research. Complete details about these studies and the statistical analysis
used to analyze the results are given in Supplementary Notes 5–7.

Data availability. The data sets from our user studies, the computer code used to
generate the comparison of algorithms, and our implementation of S# can be
obtained by contacting Jacob Crandall.

Received: 8 August 2017 Accepted: 12 December 2017

References
1. Campbell, M., Hoane, A. J. & Hsu, F. Deep blue. Artif. Intell. 134, 57–83 (2002).
2. Schaeffer, J. et al. Checkers is solved. Science 317, 1518–1522 (2007).
3. Ferrucci, D. et al. Building Watson: an overview of the DeepQA project. AI

Mag. 31, 59–79 (2010).
4. Bowling, M., Burch, N., Johanson, M. & Tammelin, O. Heads-up limit holdem

poker is solved. Science 347, 145–149 (2015).
5. Moravčík, M. et al. Deepstack: expert-level artificial intelligence in heads-up no-

limit poker. Science 356, 508–513 (2017).
6. Silver, D. et al. Mastering the game of Go with deep neural networks and tree

search. Nature 529, 484–489 (2016).
7. Groom, V. & Nass, C. Can robots be teammates? Benchmarks in human-robot

teams. Interact. Stud. 8, 483–500 (2007).
8. Hoffman, G. & Breazeal, C. Achieving fluency through perceptual-symbol practice

in human-robot collaboration. In Proc ACM/IEEE International Conference on
Human-Robot Interaction, 1–8, (ACM, Amsterdam, Netherlands, 2008).

9. Nikolaidis, S., Ramakrishnan, R., Keren, G. & Shah, J. Efficient model learning
from joint-action demonstrations for human-robot collaborative tasks. In Proc
ACM/IEEE International Conference on Human-Robot Interaction, 189-196,
(ACM, Portland, OR, 2015).

10. Bowling, M. & Veloso, M. Multiagent learning using a variable learning rate.
Artif. Intell. 136, 215–250 (2002).

11. Shoham, Y., Powers, R. & Grenager, T. If multi-agent learning is the answer,
what is the question? Artif. Intell. 171, 365–377 (2007).

12. Crandall, J. W. & Goodrich, M. A. Learning to compete, coordinate, and
cooperate in repeated games using reinforcement learning. Mach. Learn. 82,
281–314 (2011).

13. Rand, D. G. et al. Social heuristics shape intuitive cooperation. Nat. Commun.
5, 3677 (2014).

14. Boyd, R. & Richerson, P. J. Culture and the evolution of human cooperation.
Philos. Trans. Roy. Soc. B 364, 3281–3288 (2009).

15. Aldwereld, H. M., Dignum, V. & Vasconcelos, W. Group norms for multi-agent
organisations. ACM Trans. Auton. Adap. Sys., 11, 15 (2016).

16. Frank, R. H. Passions Within Reason: The Strategic Role of the Emotions (W. W.
Norton & Company, New York, NY, 1988).

17. Skyrms, B. The Stag Hunt and the Evolution of Social Structure (Cambridge
Press, Cambridge, 2003).

18. Peysakhovich, A., Nowak, M. A. & Rand, D. G. Humans display a cooperative
phenotype that is domain general and temporally stable. Nat. Commun., 5,
4939 (2014).

19. Sally, D. Conversation and cooperation in social dilemmas a meta-analysis of
experiments from 1958 to 1992. Ration. Soc. 7, 58–92 (1995).

20. Balliet, D. Communication and cooperation in social dilemmas: a meta-analytic
review. Ration. Soc. 54, 39–57 (2009).

21. Klein, G., Feltovich, P. J., Bradshaw, J. M. & Woods, D. D. in Organizational
Simulation 53 (eds Rouse, W. B. & Boff, K. R.) (Wiley, Hoboken, 2005).

22. Dautenhahn, K. Socially intelligent robots: dimensions of human–robot
interaction. Philos. Trans. Roy. Soc. B 362, 679–704 (2007).

23. Breazeal, C. Toward sociable robots. Robot. Auton. Syst. 42, 167–175 (2003).

24. Kamar, E., Gal, Y. & Grosz, B. J. Modeling information exchange opportu-
nities for effective human–computer teamwork. Artif. Intell. 195, 528–550
(2013).

25. Fudenberg, D. & Levine, D. K. The Theory of Learning in Games (The MIT
Press, Cambridge, 1998).

26. Axelrod, R. The Evolution of Cooperation (Basic Books, New York, 1984).
27. Nowak, M. & Sigmund, K. A strategy of win-stay, lose-shift that outperforms

tit-for-tat in the prisoner’s dilemma game. Nature 364, 56–58 (1993).
28. Littman, M. L. Markov games as a framework for multi-agent reinforcement

learning. In Proc 11th International Conference on Machine Learning, 157–163,
(IMLS, New Brunswick, NJ, 1994).

29. Auer, P., Cesa-Bianchi, N., Freund, Y. & Schapire, R. E. Gambling in a rigged
casino: the adversarial multi-armed bandit problem. In Proc 36th Symposium
on the Foundations of Computer Science, 322–331, (IEEE, 1995).

30. Sandholm, T. W. & Crites, R. H. Multiagent reinforcement learning in the
iterated prisoner’s dilemma. Biosystems 37, 147–166 (1996).

31. Claus, C. & Boutilier, C. The dynamics of reinforcement learning in cooperative
multiagent systems. In Proc 15th National Conference on Artificial Intelligence,
746–752, (AAAI Press, Madison, WI, 1998).

32. de Farias D. & Megiddo, N. Exploration–exploitation tradeoffs for expert
algorithms in reactive environments. Adv. Neur. Inf. Proc. Syst. 17, 409–416, 2004.

33. Bouzy, B. & Metivier, M. Multi-agent learning experiments in repeated matrix
games. In Proc 27th International Conference on Machine Learning, 119–126,
(IMLS, Haifa, Israel, 2010).

34. Karandikar, R., Mookherjee, D. R. D. & Vega-Redondo, F. Evolving aspirations
and cooperation. J. Econ. Theory 80, 292–331 (1998).

35. Iliopoulous, D., Hintze, A. & Adami, C. Critical dynamics in the evolution of
stochastic strategies for the iterated prisoner’s dilemma. PLoS. Comput. Biol. 6,
1–8 (2010).

36. Littman, M. L. & Stone, P. A polynomial-time Nash equilibrium algorithm for
repeated games. Decis. Support Syst. 39, 55–66 (2005).

37. Crandall, J. W. Towards minimizing disappointment in repeated games. J. Artif.
Intell. Res. 49, 111–142 (2014).

38. Taylor, P. D. & Jonker, L. Evolutionarily stable strategies and game dynamics.
Math. Biosci. 40, 145–156 (1978).

39. Bowling, M. Convergence and no-regret in multiagent learning. Adv. Neur. Inf.
Proc. Syst. 17, 209–216, 2004.

40. Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line
learning and an application to boosting. In Proc European Conference on
Computational Learning Theory, 23–37, (Springer-Verlang Berlin Heidelberg,
1995).

41. Leibo, J. Z., Zambaldi, V., Lanctot, M., Marecki, J. & Graepel, T. Multi-agent
reinforcement learning in sequential social dilemmas. In Proc 16th
International Conference on Autonomous Agents and Multiagent Systems,
(IFAAMAS, São Paulo, Brazil, 2017).

42. Kaelbling, L. P., Littman, M. L. & Moore, A. W. Reinforcement learning: a
survey. J. Artif. Intell. Res. 4, 237–277 (1996).

43. Gunning, D. Explainable artificial intelligence. Technical Report DARPA-BAA-
16-53, DARPA Broad Agency Announcement. http://www.darpa.mil/program/
explainable-artificialintelligence (2016).

44. Crandall, J. W. Robust learning in repeated stochastic games using meta-
gaming. In Proc 24th International Joint Conference on Artificial Intelligence,
(AAAI Press, Buenos Aires, Argentina, 2015).

45. Colin Camerer. Behavioral Game Theory (New Age International, New York,
NY, 2010).

46. Hofbauer, J. & Sigmund, K. Evolutionary Games and Population Dynamics
(Cambridge University Press, 1998).

47. Rand, D. G. & Nowak, M. A. Human cooperation. Trends Cogn. Sci. 17,
413–425 (2013).

48. Kollock, P. Social dilemmas: the anatomy of cooperation. Annu. Rev. Sociol.
28,183–214, 1998.

49. Marstaller, L., Hintze, A. & Adami, C. The evolution of representation in simple
cognitive networks. Neural Comput. 25, 2079–2107 (2013).

50. Klein, G. Recognition-primed decisions. in Advances in Man-Machine Systems
Research (ed. Rouse, W. B.) 47–92 (JAI Press, Greenwhich, 1989).

51. Arechar, A. A., Dreber, A., Fudenberg, D. & Rand, D. G. “I’m just a soul whose
intentions are good”: the role of communication in noisy repeated games.
Game. Econ. Behav. 104, 726–743 (2017).

52. Lin, R. & Kraus, S. Can automated agents proficiently negotiate with humans?
Commun. ACM 53, 78–88 (2010).

53. Haim, G., Gal, Y., Kraus, S. & Gelfand, M. A cultural sensitive agent for human-
computer negotiation. In Proc 11th International Conference on Autonomous
Agents and Multiagent Systems, (IFAAMAS, Valencia, Spain, 2012).

54. Rapoport, A. & Guyer, M. J. A Taxonomy of 2x2 Games (Bobbs-Merrill
Company, Indianapolis, IN, 1966).

55. Rapoport, A., Guyer, M. J. & Gordon, D. G. The 2x2 Game (The Univ. of
Michigan Press, Ann Arbor, MI, 1976).

56. Brams, S. J. A Theory of Moves (Cambridge University Press, Cambridge, 1994).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02597-8 ARTICLE

NATURE COMMUNICATIONS | (2018) 9:233 |DOI: 10.1038/s41467-017-02597-8 |www.nature.com/naturecommunications 11

http://www.darpa.mil/program/explainable-artificialintelligence
http://www.darpa.mil/program/explainable-artificialintelligence
www.nature.com/naturecommunications
www.nature.com/naturecommunications

57. Robinson, D. & Goforth, D. The Topology of the 2x2 Games: A New Periodic
Table (Routledge, London, 2005).

58. Bruns, B. Navigating the topology of 2x2 games: an introductory note on payoff
families, normalization, and natural order. Preprint at http://arxiv.org/abs/
1010.4727 (2010).

59. Nash, J. F. The bargaining problem. Econometrica 28, 155–162 (1950).
60. Stimpson, J. R., Goodrich, M. A. & Walters, L. C. Satisficing and learning

cooperation in the prisoner’s dilemma. In Proc 17th International Joint
Conference on Artificial Intelligence, 535–544, (Morgan Kaufmann Publishers,
Seattle, WA, 2001).

61. Simon, H. A. Rational choice and the structure of the environment. Psychol.
Rev. 63, 129–138 (1956).

62. Munoz de Cote, E. & Littman, M. L. A polynomial-time Nash equilibrium
algorithm for repeated stochastic games. In Proc 24th Conference on
Uncertainty in Artificial Intelligence, 419–426, (AUAI Press, Helsinki, Finland,
2008).

63. Papadimitriou, C. H. & Tsitsiklis, J. N. The complexity of Markov chain
decision processes. Math. Oper. Res. 12, 441–450 (1987).

64. Press, W. H. & Dyson, F. J. Iterated prisoner’s dilemma contains strategies that
dominate any evolutionary opponent. Proc. Natl Acad. Sci. USA 109,
10409–10413 (2012).

65. Littman, M. L. & Stone, P. Leading best-response strategies in repeated games.
In Proc IJCAI Workshop on Economic Agents, Models, and Mechanisms
(Morgan Kaufmann Publishers, Seattle, WA, 2001).

66. Robbins, H. Some aspects of the sequential design of experiments. Bull. Am.
Math. Soc. 58, 527–535 (1952).

67. Rabin, M. Incorporating fairness into game theory and economics. Am. Econ.
Rev. 83, 1281–1302 (1993).

68. Fehr, E. & Schmidt, K. M. in Advances in Economics and Econometrics: Theory
and Applications, Eighth World Congress, volume 1 of Econometric Society
Monographs (eds Dewatripont, M., Hansen, L. P. & Turnovsky, S. J.) 208–257
(Cambridge: Cambridge University Press, 2003).

69. Dreber, A., Rand, D. G., Fudenberg, D. & Nowak, M. A. Winners don’t punish.
Nature 452, 348–351 (2008).

70. Mealy, G. H. A method for synthesizing sequential circuits. Bell Syst. Tech. J. 34,
1045–1079 (1955).

Acknowledgements
We would like to acknowledge Vahan Babushkin and Sohan D’Souza for their help in
conducting user studies. J.W.C. was supported by donations made to Brigham Young
University and by Masdar Institute. M.O., T., and F.I.-O. were also supported by Masdar

Institute. J.-F.B. gratefully acknowledges support through the ANR-Labex IAST. I.R. is
supported by the Ethics and Governance of Artificial Intelligence Fund.

Author contributions
J.W.C. was primarily responsible for algorithm development, with Tennom and M.O.
also contributing. J.W.C., M.O., Tennom, F.I.-O., and I.R. designed and conducted user
studies. J.W.C. and S.A. wrote code for the comparison of existing algorithms. J.-F.B. led
the statistical analysis, with M.O., F.I.-O., J.W.C., and I.R. also contributing. I.R., J.W.C.,
M.C., J.-F.B., A.S., and S.A. contributed to the interpretation of the results and framing of
the paper. All authors, with J.W.C. and I.R. leading, contributed to the writing of the
paper. The vision of M.A.G. started it all many years ago.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
017-02597-8.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02597-8

12 NATURE COMMUNICATIONS | (2018) 9:233 |DOI: 10.1038/s41467-017-02597-8 |www.nature.com/naturecommunications

http://arxiv.org/abs/1010.4727
http://arxiv.org/abs/1010.4727
https://doi.org/10.1038/s41467-017-02597-8
https://doi.org/10.1038/s41467-017-02597-8
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Cooperating with machines
	Results
	Evaluating the state-of-the-art
	An algorithm that cooperates with people and other machines
	Repeated stochastic games
	Distinguishing algorithmic mechanisms

	Discussion
	Methods
	Games for studying cooperation
	Overview of S++
	Description of S#
	User studies and statistical analysis
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS

