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Cooperating with machines
Jacob W. Crandall 1, Mayada Oudah 2, Tennom3, Fatimah Ishowo-Oloko 2, Sherief Abdallah 4,5,

Jean-François Bonnefon6, Manuel Cebrian7, Azim Shariff8, Michael A. Goodrich 1 & Iyad Rahwan 7,9

Since Alan Turing envisioned artificial intelligence, technical progress has often been mea-

sured by the ability to defeat humans in zero-sum encounters (e.g., Chess, Poker, or Go). Less

attention has been given to scenarios in which human–machine cooperation is beneficial but

non-trivial, such as scenarios in which human and machine preferences are neither fully

aligned nor fully in conflict. Cooperation does not require sheer computational power, but

instead is facilitated by intuition, cultural norms, emotions, signals, and pre-evolved dis-

positions. Here, we develop an algorithm that combines a state-of-the-art reinforcement-

learning algorithm with mechanisms for signaling. We show that this algorithm can cooperate

with people and other algorithms at levels that rival human cooperation in a variety of two-

player repeated stochastic games. These results indicate that general human–machine

cooperation is achievable using a non-trivial, but ultimately simple, set of algorithmic

mechanisms.
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The emergence of driverless cars, autonomous trading algo-
rithms, and autonomous drone technologies highlight a
larger trend in which artificial intelligence (AI) is enabling

machines to autonomously carry out complex tasks on behalf of
their human stakeholders. To effectively represent their stake-
holders in many tasks, these autonomous machines must interact
with other people and machines that do not fully share the same
goals and preferences. While the majority of AI milestones have
focused on developing human-level wherewithal to compete with
people1–6 or to interact with people as teammates that share a
common goal7–9, many scenarios in which AI must interact with
people and other machines are neither zero-sum nor common-
interest interactions. As such, AI must also have the ability to
cooperate even in the midst of conflicting interests and threats of
being exploited. Our goal in this paper is to better understand how
to build AI algorithms that cooperate with people and other
machines at levels that rival human cooperation in arbitrary long-
term relationships modeled as repeated stochastic games (RSGs).

Algorithms capable of forming cooperative long-term rela-
tionships with people and other machines in arbitrary repeated
games are not easy to come by. A successful algorithm should
possess several properties. First, it must not be domain-specific—
it must have superior performance in a wide variety of scenarios
(generality). Second, the algorithm must learn to establish effec-
tive relationships with people and machines without prior
knowledge of associates’ behaviors (flexibility). To do this, it must
be able to deter potentially exploitative behavior from its partner
and, when beneficial, determine how to elicit cooperation from a
(potentially distrustful) partner who might be disinclined to
cooperate. Third, when associating with people, the algorithm
must learn effective behavior within very short timescales—i.e.,
within only a few rounds of interaction (learning speed). These
requirements create many technical challenges (Supplementary
Note 2), including the need to deal with adaptive partners who
may also be learning10,11 and the need to reason over multiple,
potentially infinite, equilibria solutions within the large strategy
spaces inherent of repeated games. The sum of these challenges
often causes AI algorithms to fail to cooperate12, even when doing
so would be beneficial to the algorithm’s long-term payoffs.

Human cooperation does not require sheer computational power,
but is rather facilitated by intuition13, cultural norms14,15, emotions
and signals16,17, and pre-evolved dispositions toward cooperation18.
Of particular note, cheap talk (i.e., costless, non-binding signals) has
been shown to lead to greater human cooperation in repeated
interactions19,20. These prior works suggest that machines may also
rely on such mechanisms, both to deal with the computational
complexities of the problem at hand and to develop shared repre-
sentations with people21–24. However, it has remained unclear how
autonomous machines can emulate these mechanisms in a way that
supports generality, flexibility, and fast learning speeds.

The primary contribution of this work is threefold. First, we
conduct an extensive comparison of existing algorithms for repeated
games. Second, we develop and analyze a learning algorithm that
couples a state-of-the-art machine-learning algorithm (the highest
performing algorithm in our comparisons of algorithms) with
mechanisms for generating and responding to signals at levels
conducive to human understanding. Finally, via extensive simula-
tions and user studies, we show that this learning algorithm learns to
establish and maintain effective relationships with people and other
machines in a wide variety of RSGs at levels that rival human
cooperation, a feat not achieved by prior algorithms. In so doing, we
investigate the algorithmic mechanisms that are responsible for the
algorithm’s success. These results are summarized and discussed in
the next section, and given in full detail in the Supplementary Notes.

Results
Evaluating the state-of-the-art. Over the last several decades,
algorithms for generating strategic behavior in repeated games
have been developed in many disciplines, including economics,
evolutionary biology, and the AI and machine-learning commu-
nities[10–12]25–36. To evaluate the ability of these algorithms to
forge successful relationships, we selected 25 representative
algorithms from these fields, including classical algorithms such
as (generalized) Generous Tit-for-Tat (i.e., Godfather36) and win-
stay-lose-shift (WSLS)27, evolutionarily evolved memory-one and
memory-two stochastic strategies35, machine-learning algorithms
(including reinforcement-learning), belief-based algorithms25,
and expert algorithms32,37. Implementation details used in our
evaluation for each of these algorithms are given in Supplemen-
tary Note 3.

We compared these algorithms with respect to six performance
metrics at three different game lengths: 100-, 1000-, and 50,000-
round games. The first metric was the Round-Robin average,
which was calculated across all games and partner algorithms
(though we also considered subsets of games and partner
algorithms). This metric tests an algorithm’s overall ability to
forge profitable relationships across a range of potential partners.
Second, we computed the best score, which is the percent of
algorithms against which an algorithm had the highest average
payoff compared to all 25 algorithms. This metric evaluates how
often an algorithm would be the desired choice, given knowledge
of the algorithm used by one’s partner. The third metric was the
worst-case score, which is the lowest relative score obtained by
the algorithm. This metric addresses the ability of an algorithm to
bound its losses. Finally, the last three metrics are designed to
evaluate the robustness of algorithms to different populations.
These metrics included the usage rate of the algorithms over
10,000 generations of the replicator dynamic38, and two forms of
elimination tournaments35. Formal definitions of these metrics
and methods for ranking the algorithms with respect to them are
provided in Supplementary Note 3.

As far as we are aware, none of the selected algorithms had
previously been evaluated in this extensive set of games played
against so many different kinds of partners, and against all of
these performance metrics. Hence, this evaluation illustrates how
well these algorithms generalize in two-player normal-form
games, rather than being fine-tuned for specific scenarios.

Results of the evaluation are summarized in Table 1, with more
detailed results and analysis appearing in Supplementary Note 3.
We make two high-level observations here. First, it is interesting
which algorithms were less successful in these evaluations. For
instance, while Generalized Tit-for-Tat (gTFT), WSLS, and
memory-one and memory-two stochastic strategies (e.g., Mem-
1 and Mem-2) are successful in prisoner’s dilemmas, they are not
consistently effective across the full set of 2 × 2 games. These
algorithms are particularly ineffective in longer interactions, as
they do not effectively adapt to their partner’s behavior.
Additionally, algorithms that minimize regret (e.g., Exp329,
GIGA-WoLF39, and WMA40), which is the central component
of world-champion computer poker algorithms4,5, also per-
formed poorly.

Second, while many algorithms had high performance with
respect to some measure, only S++37 was a top-performing
algorithm across all metrics at all game lengths. Furthermore,
results reported in Supplementary Note 3 show that it maintained
this high performance in each class of game and when associating
with each class of algorithm. S++ learns to cooperate with like-
minded partners, exploit weaker competition, and bound its
worst-case performance (Fig. 1a). Perhaps most importantly,

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02597-8

2 NATURE COMMUNICATIONS |  (2018) 9:233 |DOI: 10.1038/s41467-017-02597-8 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


whereas many machine-learning algorithms do not forge
cooperative relationships until after thousands of rounds of
interaction (if at all) (e.g. ref. 41), S++ tends to do so within
relatively few rounds of interaction (Fig. 1b), likely fast enough to
support interactions with people.

Given S++’s consistent success when interacting with other
algorithms, we also evaluated its ability to forge cooperative
relationships with people via a user study in which we paired S++
and MBRL-1, a model-based reinforcement-learning algorithm42,
with people in four repeated games. The results of this user study,
summarized in Fig. 2, show that while S++ establishes cooperative
relationships with copies of itself, it does not consistently forge
cooperative relationships with people. Across the four games,
pairings consisting of S++ and a human played the mutually
cooperative solution (i.e., the Nash bargaining solution) in <30%
of rounds. Nevertheless, people likewise failed to consistently
cooperate with each other in these games. See Supplementary
Note 5 for additional details and results.

In summary, none of the 25 existing algorithms we evaluated
establishes effective long-term relationships with both people and
other algorithms.

An algorithm that cooperates with people and other machines.
Prior work has shown that humans rely on costless, non-binding
signals (called cheap talk) to establish cooperative relationships in
repeated games19,20. Thus, we now consider scenarios that permit
such communications. While traditional repeated games do not
provide means for cheap talk, we consider a richer class of
repeated games in which players can engage in cheap talk by
sending messages at the beginning of each round. Consistent with
prior work20, we limited messages to a pre-determined set of
speech acts.

While signaling via cheap talk comes naturally to humans,
prior algorithms designed for repeated games are not equipped

with the ability to generate and respond to such signals. To be
useful in establishing relationships with people in arbitrary
scenarios, costless signals should be connected to actual behavior,
should be communicated at a level conducive to human
understanding, and should be generated by game-independent
mechanisms. The ability to utilize such signals relates to the idea
of explainable AI, which has recently become a grand challenge43.
This challenge arises due to the fact that most machine-learning
algorithms have low-level internal representations that are not
easily understood or expressed at levels that are understandable to
people, especially in arbitrary scenarios. As such, it is not obvious
how machine-learning algorithms can, in addition to prescribing
strategic behavior, generate and respond to costless signals at
levels that people understand in arbitrary scenarios.

Unlike typical machine-learning algorithms, the internal
structure of S++ provides a high-level representation of the
algorithm’s dynamic strategy that can be described in terms of the
dynamics of the underlying experts. Since each expert encodes a
high-level philosophy, S++ can be used to generate signals (i.e.,
cheap talk) that describe its intentionality. Speech acts from its
partner can also be compared to its experts’ philosophies to
improve its expert-selection mechanism. In this way, we
augmented S++ with a communication framework that gives it
the ability to generate and respond to cheap talk.

The resulting new algorithm, dubbed S# (pronounced “S
sharp”), is depicted in Fig. 3; details of S# are provided in
Methods and Supplementary Note 4. In scenarios in which cheap
talk is not possible, S# is identical to S++. When cheap talk is
permitted, S# differs from S++ in that it generates cheap talk that
corresponds to the high-level behavior and state of S++ and uses
the signals spoken by its partner to alter which expert it chooses
to follow in order to more easily coordinate behavior. Since self-
play analysis indicated that both of these mechanisms help
facilitate cooperative relationships (see Supplementary Note 4, in

Table 1 Summary results for our comparison of algorithms

Algorithm Round-Robin
average

% Best
score

Worst-case
score

Replicator
dynamic

Group-1
Tourney

Group-2
Tourney

Rank summary
min–mean–max

S++ 1, 1, 1 2, 1, 2 1, 1, 1 1, 1, 1 1, 1, 2 1, 1, 1 1–1.2–2
Manipulator 3, 2, 3 4, 3, 8 5, 2, 4 6, 4, 3 5, 3, 3 5, 2, 2 2–3.7–8
Bully 3, 2, 1 3, 2, 1 7, 13, 20 7, 3, 2 6, 2, 1 6, 3, 5 1–4.8–20
S++/simple 5, 4, 4 8, 5, 9 4, 6, 10 10, 2, 6 8, 4, 6 9, 4, 6 2–6.1–10
S 5, 5, 8 6, 7, 10 3, 3, 8 5, 5, 8 7, 5, 9 7, 5, 9 3–6.4–10
Fict. play 2, 8, 14 1, 6, 10 2, 8, 16 3, 12, 15 2, 8, 12 4, 9, 14 1–8.1–16
MBRL-1 6, 6, 10 5, 4, 7 8, 7, 14 11, 11, 13 9, 7, 10 8, 7, 10 4–8.5–14
EEE 11, 8, 7 14, 9, 5 9, 4, 2 14, 10, 9 13, 9, 8 13, 10, 8 2–9.1–14
MBRL-2 14, 5, 5 13, 8, 6 19, 5, 3 18, 9, 4 18, 6, 5 18, 6, 4 3–9.2–19
Mem-1 6, 9, 13 7, 10, 21 6, 9, 17 2, 6, 10 3, 10, 17 2, 8, 15 2–9.5–21
M-Qubed 14, 20, 4 15, 20, 3 15, 19, 5 17, 19, 5 17, 21, 4 16, 21, 3 3–13.2–21
Mem-2 9, 11, 20 9, 11, 22 13, 17, 22 4, 13, 19 4, 13, 25 3, 12, 20 3–13.7–25
Manip-Gf 11, 11, 21 12, 12, 19 12, 11, 19 9, 7, 20 12, 14, 20 11, 13, 21 7–14.2–21
WoLF-PHC 17, 11, 13 18, 14, 14 18, 14, 18 16, 14, 14 16, 11, 11 15, 11, 11 11–14.2–18
QL 17, 17, 7 19, 19, 4 17, 18, 7 19, 18, 7 19, 20, 7 19, 18, 7 4–14.4–20
gTFT 11, 14, 22 11, 15, 20 11, 16, 23 8, 8, 22 10, 16, 21 10, 15, 22 8–15.3–23
EEE/simple 20, 15, 11 20, 17, 12 20, 10, 9 20, 16, 11 24, 15, 14 20, 16, 13 9–15.7–24
Exp3 19, 23, 11 16, 23, 15 16, 23, 6 15, 23, 12 15, 25, 13 17, 25, 12 6–17.2–25
CJAL 24, 14, 14 25, 14, 13 24, 12, 15 24, 17, 16 20, 12, 16 22, 14, 16 12–17.3–25
WSLS 9, 17, 24 10, 16, 24 10, 20, 24 12, 20, 24 11, 17, 24 12, 17, 25 9–17.6–25
GIGA-WoLF 14, 19, 23 17, 18, 23 14, 15, 21 13, 15, 23 14, 18, 22 14, 19, 23 13–18.1–23
WMA 21, 21, 15 21, 21, 16 22, 21, 12 22, 21, 17 21, 19, 15 23, 20, 17 12–19.2–23
Stoch. FP 21, 21, 15 22, 22, 17 23, 22, 11 23, 22, 18 25, 24, 18 25, 22, 18 11–20.5–25
Exp3/simple 21, 24, 16 23, 24, 18 21, 24, 13 21, 24, 21 22, 22, 19 21, 23, 19 13–20.9–24
Random 24, 25, 25 24, 25, 25 25, 25, 25 25, 25, 25 23, 23, 23 24, 24, 24 23–24.4–25

This summary gives the relative rank of each algorithm with respect to each of the six performance metrics we considered, at each game length. A lower rank indicates higher performance. For each
metric, the algorithms are ranked in 100-round, 1000-round, and 50,000-round games, respectively. For example, the 3-tuple 3, 2, 1 indicates the algorithm was ranked 3rd, 2nd, and 1st in 100, 1000, and
50,000-round games, respectively. More detailed results and explanations are given in Supplementary Note 3

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02597-8 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:233 |DOI: 10.1038/s41467-017-02597-8 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


particular Supplementary Figure 12), we anticipated that, in
combination with S++’s ability to learn effective behavior when
paired with both cooperative and devious partners, S#’s signaling
mechanisms could be the impetus for consistently forging
cooperative relationships with people.

We conducted a series of three user studies involving 220
participants, who played in a total of 472 repeated games, to
determine the ability of S# to forge cooperative relationships with
people. The full details of these studies are provided in
Supplementary Notes 5–7. We report representative results from
the final study, in which participants played three representative
repeated games (drawn from distinct payoff families; see Methods
and Supplementary Note 2) via a computer interface that hid
their partner’s identity. In some conditions, players could engage

in cheap talk by sending messages at the beginning of each round
via the computer interface.

The proportion of mutual cooperation achieved by
human–human, human–S#, and S#–S# pairings are shown in
Fig. 4. When cheap talk was not permitted, human–human and
human–S# pairings did not frequently result in cooperative
relationships. However, across all three games, the presence of
cheap talk doubled the proportion of mutual cooperation
experienced by these two pairings. Thus, like people, S# used
cheap talk to greatly enhance its ability to forge cooperative
relationships with humans. Furthermore, while S#’s speech profile
was distinct from that of humans (Fig. 5a), subjective post-
interaction assessments indicate that S# used cheap talk to
promote cooperation as effectively as people (Fig. 5b). In fact,
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Fig. 2 Results from an initial user study. In this study, participants were paired with other people, S++, and MBRL-1 in four different repeated normal-form
games. Each game consisted of 50+ rounds. a The proportion of rounds in which both players cooperated when a player was paired with a partner of like
type (self-play) and with a human. b The standardized payoff, computed as the standardized z-score, obtained by each algorithm when paired with each
partner type. In both plots, error bars show the standard error of the mean. These plots show that while S++ learns to cooperate with a copy of itself, it fails
to consistently forge cooperative relationships with people. There were some variations across games. Details about the user study and results are
provided in Supplementary Note 5
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Fig. 1 Illustrations of S++’s learning dynamics. a An illustration of S++’s learning dynamics in Chicken, averaged over 50 trials. For ease of exposition, S++’s
experts are categorized into groups (see Supplementary Note 3 for details). Top-left: When (unknowingly) paired with another agent that uses S++, S++
initially tries to bully its partner, but then switches to fair, cooperative experts when attempts to exploit its partner are unsuccessful. Top-right: When
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high payoffs for S++. b The average per-round payoffs (averaged over 50 trials) of various machine-learning algorithms over time in self-play in a
traditional (0-1-3-5)-prisoner’s dilemma in which mutual cooperation produces a payoff of 3 and mutual defection produces a payoff of 1. Of the machine-
learning algorithms we evaluated, only S++ quickly forms successful relationships with other algorithms across the set of 2 × 2 games
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many participants were unable to distinguish S# from a human
player (Fig. 5c).

In addition to demonstrating S#’s ability to form cooperative
relationships with people, Fig. 4 also shows that S#–S# pairings
were more successful than either human–human or human–S#

pairings. In fact, S++–S++ pairings (i.e., S#–S# pairings without
the ability to communicate) achieved cooperative relationships as
frequently as human–human and human–S# pairings that were
allowed to communicate via cheap talk (Fig. 4a). Given the ability
to communicate, S#–S# pairings were far more consistent in
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partner’s last proposed plan. Next, in step 4, S# selects an expert, using algorithm S34,60, from among those experts that both potentially meet its
aspiration (step 2) and are congruent with its partner’s latest proposal (step 3). If E(t) is empty, S# selects its expert from among those experts that meet
its aspiration (step 2). The currently selected expert generates signals (speech from a pre-determined set of speech acts) based on its game-generic state
machine b. In step 5, S# follows the strategy dictated by the selected expert for m rounds of the repeated game. Finally, in step 6, S# updates its aspiration
level based on the average reward R it has received over the last m rounds of the game. It also updates its experts according to each expert’s internal
representation. It then returns to step 2 and repeats the process for the duration of the repeated game. b An example speech-generation mechanism for an
expert that seeks to teach its partner to play a fair, pareto-optimal strategy. For each expert, speech is generated using a state machine (specifically, a
Mealy machine70), in which the algorithm’s states are the nodes, algorithmic events create transitions between nodes, and speech acts define the outputs
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Fig. 4 Proportion of mutual cooperation achieved in the culminating user study. In this study, 66 volunteer participants were paired with each other and S# in
three representative games (Chicken, Alternator Game, and Prisoner’s Dilemma). Results are shown for when cheap talk was both permitted and not permitted.
Note that S# is identical to S++ when cheap talk is not permitted. a The proportion of rounds in which both players cooperated over all rounds and all games. b
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standard error of the mean. A full statistical analysis confirming the observations shown in this figure are provided in Supplementary Note 7
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forging cooperative relationships than both human–human and
human–S# pairings.

Together, these results illustrate that, across the games studied,
the combined behavioral and signaling strategies of S# were at
least as effective as those of human players.

Repeated stochastic games. While the previous results apper-
tained to normal-form games, S++ is also effective in more
complex scenarios44. This facilitates an extension of S# to these
more complex games. Because normal-form games capture the
essence of the dilemmas faced by people in repeated interactions,
they have been used to study cooperation for decades in the fields
of behavioral economics45, mathematical biology46, psychology47,
sociology48, computer science36, and political science26. However,
such scenarios abstract away some complexities of real-world
interactions. Thus, we also consider the more general class of
RSGs, which require players to reason over sequences of moves in
each round, rather than the single-move rounds of normal-form
games.

To generate and respond to signals in RSGs, S# uses the same
mechanisms as it does in normal-form games with one exception.
In normal-form games, joint plans for a round can be
communicated by specifying a joint action. However, in RSGs,
plans are often more complex as they involve a series of joint
actions that would not typically be used in human communica-
tion. In such cases, S# instead communicates plans with higher-
level terms such as “Let’s cooperate” or “I get the higher payoff,”
and then relies on its partner to infer the specifics of the proposed
joint strategy. See Methods for details.

Our results for RSGs are similar to those of normal-form games.
While S++ does not typically forge effective relationships with
people in these more complex scenarios, our results show that S#-,
an early version of S# that generated cheap talk but did not
respond to the cheap talk of others, is more successful at doing so.
For example, Fig. 6 shows results for a turning-taking scenario in
which two players must learn how to share a set of blocks. Like
people, S#- used cheap talk to substantially increase its payoffs
when associating with people in this game (Fig. 6b). Though S#-
was limited by its inability to respond to the cheap talk of others
(Supplementary Note 4; see, in particular, Supplementary
Table 12), this result mirrors those we observed in normal-form
games. (Supplementary Note 6 contains additional details and
results.) This illustrates that S# can also be used in more complex
scenarios to forge cooperative relationships with people.

Distinguishing algorithmic mechanisms. Why is S# so successful
in forging cooperative relationships with both people and other
algorithms? Are its algorithmic mechanisms fundamentally differ-
ent from those of other algorithms for repeated games? We have
identified three algorithmic mechanisms responsible for S#’s suc-
cess. Clearly, Figs. 4, 5, 6 demonstrate that the first of these
mechanisms is S#’s ability to generate and respond to relevant
signals that people can understand, a trait not present in previous
learning algorithms designed for repeated interactions. These sig-
naling capabilities expand S#’s flexibility in that they also allow S#
to more consistently forge cooperative relationships with people.
Without this capability, it does not consistently do so. Figure 7a
demonstrates one simple reason that this mechanism is so impor-
tant: cheap talk helps both S# and humans to more quickly develop
a pattern of mutual cooperation with their partners. Thus, the
ability to generate and respond to signals at a level conducive to
human understanding is a critical algorithmic mechanism.

Second, S# uses a rich set of expert strategies that includes a
variety of equilibrium strategies and even a simple learning
algorithm. While none of these individual experts has an overly
complex representation (e.g., no expert remembers the full history
of play), these experts are more sophisticated than those
traditionally considered (though not explicitly excluded) in the
discussion of expert algorithms29,39,40. This more sophisticated
set of experts permits S# to adapt to a variety of partners and
game types, whereas algorithms that rely on a single strategy or a
less sophisticated set of experts are only successful in particular
kinds of games played with particular partners49 (Fig. 7c). Thus,
in general, simplifying S# by removing experts from this set will
tend to limit the algorithm’s flexibility and generality, though
doing so will not always negatively impact its performance when
paired with particular partners in particular games.

Finally, the somewhat non-conventional expert-selection
mechanism used by S# (see Eq. 1 in Methods) is central to its
success. While techniques such as ε-greedy exploration (e.g.,
EEE32) and regret-matching (e,g., Exp329) have permeated
algorithm development in the AI community, S# instead uses
an expert-selection mechanism closely aligned with recognition-
primed decision-making50. Given the same full, rich set of
experts, more traditional expert-selection mechanisms establish
effective relationships in far fewer scenarios than S# (Fig. 7c).
Figure 7 provides insights into why this is so. Compared to the
other expert-selection mechanisms, S# has a greater combined
ability to quickly establish a cooperative relationship with its
partner (Fig. 7a) and then to maintain it (Fig. 7b), a condition
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brought about by S#’s tendency to not deviate from cooperation
after mutual cooperation has been established (i.e., loyalty).

The loyalty brought about by S#’s expert-selection mechanism
helps explain why S#–S# pairings substantially outperformed
human–human pairings in our study (Fig. 4). S#’s superior
performance can be attributed to two human tendencies. First,
while S# did not typically deviate from cooperation after
successive rounds of mutual cooperation (Fig. 7b), many human
players did. Almost universally, such deviations led to reduced
payoffs to the deviator. Second, as in human–human interactions
observed in other studies51, a sizable portion of our participants
failed to keep some of their verbal commitments. On the other

hand, since S#’s verbal commitments are derived from its
intended future behavior, it typically carries out the plans it
proposes. Had participants followed S#’s strategy in these two
regards (and all other behavior by the players had remained
unchanged), human–human pairings could have performed
nearly as well, on average, as S#–S# pairings (Fig. 8; see
Supplementary Note 7 for details).

Discussion
Our studies of human–S# partnerships were limited to five
repeated games, selected carefully to represent different classes of
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games from the periodic table of games (Supplementary Note 2).
These games also included normal-form games as well as richer
forms of RSGs. Though future work should address more sce-
narios, S#’s success in establishing cooperative relationships with
people in these representative games, along with its consistently
high performance across all classes of 2 × 2 games and various
RSGs44 when associating with other algorithms, gives us some
confidence that these results will generalize to other scenarios.

This paper focused on the development and analysis of algo-
rithmic mechanisms that allow learning algorithms to forge
cooperative relationships with both people and other algorithms
in two-player RSGs played with perfect information. This class of
games encompasses a vast majority of cooperation problems

studied in psychology, economics, and political science. However,
while the class of RSGs is quite general and challenging in and of
itself, future work should focus on developing algorithms that can
effectively cooperate with people and other algorithms in even
more complex scenarios52, including multi-player repeated
games, repeated games with imperfect information, and scenarios
in which the players possibly face a different payoff function in
each round. We believe that principles and algorithmic
mechanisms identified and developed in this work will help
inform the development of algorithms that cooperate with people
in these (even more challenging) scenarios.

Since Alan Turing envisioned AI, major milestones have often
focused on either defeating humans in zero-sum encounters1–6,
or to interact with people as teammates that share a common
goal7–9. However, in many scenarios, successful machines must
cooperate with, rather than compete against, humans and other
machines, even in the midst of conflicting interests and threats of
being exploited. Our work demonstrates how autonomous
machines can learn to establish cooperative relationships with
people and other machines in repeated interactions. We showed
that human–machine and machine–machine cooperation is
achievable using a non-trivial, but ultimately simple, set of
algorithmic mechanisms. These mechanisms include computing a
variety of expert strategies optimized for various scenarios, a
particular meta-strategy for selecting experts to follow, and the
ability to generate and respond to costless, non-binding signals
(called cheap talk) at levels conducive to human understanding.
We hope that this extensive demonstration of human cooperation
with autonomous machines in repeated games will spur sig-
nificant further research that will ensure that autonomous
machines, designed to carry out human endeavors, will cooperate
with humanity.

Methods
Games for studying cooperation. We describe the benchmark of games used in
our studies, provide an overview of S++, and describe S# in more detail. Details that
are informative but not essential to gaining an understanding of the main results of
the paper are provided in the Supplementary Notes. We begin with a discussion
about games for benchmarking cooperation.

We study cooperation between people and algorithms in long-term
relationships (rather than one-shot settings53) in which the players do not share all
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the same preferences. In this paper, we model these interactions as RSGs. An RSG,
played by players i and −i, consists of a set of rounds. In each round, the players
engage in a sequence of stage games drawn from the set of stage games S. In each
stage s ∈ S, both players choose an action from a finite set. Let A(s) = Ai(s) ×A−i(s)
be the set of joint actions available in stage s, where Ai (s) and A−i (S) are the action
sets of players i and −i, respectively. Each player simultaneously selects an action
from its set of actions. Once joint action a = (ai, a−i) is played in stage s, each player
receives a finite reward, denoted ri (s, a) and r−i (s, a), respectively. The world also
transitions to some new stage s′ with probability defined by PM (s, a, s′). Each round
of an RSG begins in the start stage ŝ 2 S and terminates when some goal stage
sg 2 G � S is reached. A new round then begins in stage ŝ. The game repeats for an
unknown number of rounds. In this work, we assume perfect information.

Real-world interactions often permit cheap talk, in which players send non-
binding, costless signals to each other before taking actions. In this paper, we add
cheap talk to repeated games by allowing each player, at the beginning of each
round, to send a set of messages (selected from a pre-determined set of speech acts
M) prior to acting in that round. Formally, let PðMÞ denote the power set of M,
and let miðtÞ 2 PðMÞ be the set of messages sent by player i prior to round t. Only
after sending the message mi(t) can player i view the message m−1(t) (sent by its
partner) and vice versa.

As with all historical grand challenges in AI, it is important to identify a class of
benchmark problems to compare the performance of different algorithms. When it
comes to human cooperation, a fundamental benchmark has been 2 × 2, general-
sum, repeated games54. This class of games has been a workhorse for decades in the
fields of behavioral economics45, mathematical biology45, psychology46 sociology47,
computer science36, and political science26. These fields have revealed many aspects
of human cooperative behavior through canonical games, such as Prisoner’s
Dilemmas, Chicken, Battle of the Sexes, and the Stag Hunt. Such games, therefore,
provide a well-established, extensively studied, and widely understood benchmark
for studying the capabilities of machines to develop cooperative relationships.

Thus, for foundational purposes, we initially focus on two-player, two-action
normal-form games, or RSGs with a single stage (i.e., |S| = 1). This allows us to fully
enumerate the problem domain under the assumption that payoff functions follow
strict ordinal preference orderings. The periodic table of 2 × 2 games54–58 (see
Supplementary Figure 1 along with Supplementary Note 2) identifies and
categorizes 144 unique game structures that present many unique scenarios in
which machines may need to cooperate. We use this set of game structures as a
benchmark against which to compare the abilities of algorithms to cooperate.
Successful algorithms should forge successful relationships with both people and
machines across all of these repeated games. In particular, we can use these games
to quantify the abilities of various state-of-the-art machine-learning algorithms to
satisfy the properties advocated in the introduction: generality across games,
flexibility across opponent types (including humans), and speed of learning.

Though we initially focus on normal-form RSGs, we are interested in
algorithms that can be used in more general settings, such as RSGs in which |S| > 1.
These games require players to reason over multiple actions in each round. Thus,
we also study the algorithms in a set of such games, including the Block Game
shown in Fig. 6a. Additional results are reported in Supplementary Note 6.

The search for metrics that properly evaluate successful behavior in repeated
games has a long history, for which we refer the reader to Supplementary Note 2. In
this paper, we focus on two metrics of success: empirical performance and
proportion of mutual cooperation. Ultimately, the success of a player in an RSG is
measured by the sum of the payoffs the player receives over the duration of the
game. A successful algorithm should have high empirical performance across a
broad range of games when paired with many different kinds of partners. However,
since the level of mutual cooperation (i.e., how often both players cooperate with
each other) often highly correlates with a player’s empirical performance26, the
ability to establish cooperative relationships is a key attribute of successful
algorithms. However, we do not consider mutual cooperation as a substitute for
high empirical performance, but rather as a supporting factor.

The term “cooperation” has specific meaning in well-known games such as the
Prisoner’s Dilemma. In other games, the term is much more nebulous.
Furthermore, mutual cooperation can be achieved in degrees; it is usually not an all
or nothing event. However, for simplicity in this work, we define mutual
cooperation as the Nash bargaining solution of the game59, defined as the unique
solution that maximizes the product of the players’ payoffs minus their maximin
values. Supplementary Table 4 specifies the Nash bargaining solutions for the
games used in our user studies. Interestingly, the proportion of rounds that players
played mutually cooperative solutions (as defined by this measure) was strongly
correlated with the payoffs a player received in our user studies. For example, in
our third user study, the correlation between payoffs received and proportion of
mutual cooperation was r (572)=0.909.

Overview of S++. S# is derived from S++37,44, an expert algorithm that combines
and builds on decades of research in computer science, economics, and the
behavioral and social sciences. Since understanding S++ is key to understanding S#,
we first overview S++.

S++ is defined by a method for computing a set of experts for arbitrary RSGs
and a method for choosing which expert to follow in each round (called the expert-
selection mechanism). Given a set of experts, S++’s expert-selection mechanism
uses a meta-level control strategy based on aspiration learning34,60,61 to

dynamically prune the set of experts it considers following in a round. Formally, let
E denote the set of experts computed by S++. In each epoch (beginning in round t),
S++ computes the potential ρj(t) of each expert ej ∈ E, and compares this potential
with its aspiration level α(t) to form the reduced set E(t) of experts:

EðtÞ ¼ fej 2 E : ρjðtÞ � αðtÞg: ð1Þ

This reduced set consists of the experts that S++ believes could potentially
produce satisfactory payoffs. It then selects one expert esel(t) ∈ E(t) using a
satisficing decision rule34,60. Over the next m rounds, it follows the strategy
prescribed by esel(t). After these m rounds, it updates its aspiration level as follows:

αðt þmÞ  λmαðtÞ þ ð1� λmÞR; ð2Þ

where λ ∈ (0, 1) is the learning rate and R is the average payoff S++ obtained in the
last m rounds. It also updates each expert ej ∈ E based on its peculiar reasoning
mechanism. A new epoch then begins.

S++ uses the description of the game environment to compute a diverse set of
experts. Each expert uses distinct mathematics and assumptions to produce a
strategy over the entire space of the game. The set of experts used in the
implementation of S++ used in our user studies includes five expectant followers,
five trigger strategies, a preventative strategy44, the maximin strategy, and a model-
based reinforcement learner (MBRL-1). For illustrative purposes relevant to the
description of S#, we overview how the expectant followers and trigger strategies
are computed.

Both trigger strategies and expectant followers (which are identical to trigger
strategies except that they omit the punishment phase of the strategy) are defined
by a joint strategy computed over all stages of the RSG. Thus, to create a set of such
strategies, S++ first computes a set of pareto-optimal joint strategies, each of which
offers a different compromise between the players. This is done by solving Markov
decision processes (MDPs) over the joint-action space of the RSG. These MDPs are
defined by A, S, and PM of the RSG, as well as a payoff function defined as a convex
combination of the players’ payoffs62:

yωðs; aÞ ¼ ωriðs; aÞ þ ð1� ωÞr�iðs; aÞ; ð3Þ

where ω ∈ [0, 1]. Then, the value of joint-action a in state s is

Qωðs; aÞ ¼ yωðs; aÞ þ
X

s′2S
PMðs; a; s′ÞVωðs′Þ; ð4Þ

where VωðsÞ ¼ maxa2AðsÞ Qωðs; aÞ. The MDP can be solved in polynomial time
using linear programming63.

By solving MDPs of this form for multiple values of ω, S++ computes a variety
of possible pareto-optimal62 joint strategies. We call the resulting solutions “pure
solutions.” These joint strategies produce joint payoff profiles. Let MDP(ω) denote
the joint strategy produced by solving an MDP for a particular ω. Also, let Vω

i ðsÞ be
player i’s expected future payoff from stage s when MDP(ω) is followed. Then, the
ordered pair Vω

i ð̂sÞ;Vω
�i ð̂sÞ

� �
is the joint payoff vector for the joint strategy defined

by MDP(ω). Additional solutions, or “alternating solutions,” are obtained by
alternating across rounds between different pure solutions. Since longer cycles are
difficult for a partner to model, S++ only includes cycles of length two.

Applying this technique to a 0-1-3-5 Prisoner’s Dilemma produces the joint
payoffs depicted in Fig. 9a. Notably, MDP(0.1), MDP(0.5), and MDP(0.9) produce
the joint payoffs (0, 5), (3, 3), and (5, 0), respectively. Alternating between these
solutions produces three other solutions whose (average) payoff profiles are also
shown. These joint payoffs reflect different compromises, of varying degrees of
fairness, that the two players could possibly agree upon.

Regardless of the structure of the RSG, including whether it is simple or
complex, this technique produces a set of potential compromises available in the
game. For example, Fig. 9b shows potential solutions computed for a two-player
micro-grid scenario44 (with asymmetric payoffs) in which players must share
energy resources. Despite the differences in the dynamics of the Prisoner’s
Dilemma and this micro-grid scenario, these games have similar sets of potential
compromises. As such, in each game, S++ must learn which of these compromises
to play, including whether to make fair compromises, or compromises that benefit
one player over the other (when they exist). These game-independent similarities
can be exploited by S# to provide signaling capabilities that can be used in arbitrary
RSG’s, an observation we exploited to develop S#’s signaling mechanisms (see the
next subsection for details).

The implementation of S++ used in our user studies selects five of these
compromises, selected to reflect a range of different compromises. They include the
solution most resembling the game’s egalitarian solution62, and the two solutions
that maximize each player’s payoff subject to the other player receiving at least its
maximin value (if such solutions exist). The other two solutions are selected to
maximize the Euclidean distance between the payoff profiles of selected solutions. The
five selected solutions form five expectant followers (which simply repeatedly follow
the computed strategy) and five trigger strategies. For the trigger strategies, the
selected solutions constitute the offers. The punishment phase is the strategy that
minimizes the partner’s maximum expected payoff, which is played after the partner
deviates from the offer until the sum of its partner’s payoffs (from the time of the
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deviation) are below what it would have obtained had it not deviated from the offer.
This makes following the offer of the trigger strategy the partner’s optimal strategy.

The resulting set of experts available to S++ generalizes many popular strategies
that have been studied in past work. For example, for prisoner’s dilemmas, the
computed trigger strategies include Generous Tit-for-Tat and other strategies that
resemble zero-determinant strategies64 (e.g., Bully65). Furthermore, computed
expectant followers include Always Cooperate, while the expert MBRL-1 quickly
learns the strategy Always Defect when paired with a partner that always cooperates.
In short, the set of strategies (generalized to the game being played) available for S++
to follow give it the flexibility to effectively adapt to many different kinds of partners.

Description of S#. S# builds on S++ in two ways. First, it generates speech acts to
try to influence its partner’s behavior. Second, it uses its partner’s speech acts to
make more informed choices regarding which experts to follow.

Signaling to its partner: S#’s signaling mechanism was designed with three
properties in mind: game independence, fidelity between signals and actions, and
human understandability (i.e., the signals should be communicated at a level
conducive to human understanding). One way to do this is to base signal
generation on game-independent, high-level ideals rather than game-specific
attributes. Example ideals include proficiency assessment10,27,61,66, fairness67,68,
behavioral expectations25, and punishment and forgiveness26,69. These ideals
package well-established concepts of interaction in terms people are familiar with.

Not coincidentally, S++’s internal state and algorithmic mechanisms are largely
defined in terms of these high-level ideals. First, S++’s decision-making is governed
by proficiency assessment. It continually evaluating its own proficiency and that of
its experts by comparing its aspiration level (Eq. 2), which encodes performance
expectations, with its actual and potential performance (see descriptions of
traditional aspiration learning34,60,61 and Eq. 1). S# also evaluates its partner’s
performance against the performance it expects it partner to have. Second, the
array of compromises computed for expectant followers and trigger strategies
encode various degrees of fairness. As such, these experts can be defined and even
referred to by references to fairness. Third, strategies encoded by expectant
followers and trigger strategies define expectations for how the agent and its
partner should behave. Finally, transitions between the offer and punishment
phases of trigger strategies define punishment and forgiveness.

The cheap talk generated by S# is based not on the individual attributes of the
game, but rather on events taken in context of these five game-independent
principles (as they are encoded in S++). Specifically, S# automatically computes a
finite-state machine (FSM) with output (specifically, a Mealy machine70) for each
expert. The states and transitions in the state machine are defined by proficiency
assessments, behavioral expectations, and (in the case of experts encoding trigger
strategies) punishment and forgiveness. The outputs of each FSM are speech acts
that correspond to the various events and that also refer to the fairness of outcomes
and potential outcomes.

For example, consider the FSM with output for a trigger strategy that offers a
pure solution, which is shown in Fig. 3b. States s0 – s6 are states in which S# has
expectations that its partner will conform with the trigger strategy’s offer. Initially
(when transitioning from state s0 to s1), S# voices these behavioral expectations
(speech act #15), along with a threat that if these expectations are not met, it will
punish its partner (speech act #0). If these expectations are met (event labeled s), S#
praises its partner (speech acts #5–6). On the other hand, when behavioral
expectations are not met (events labeled d and g), S# voices its dissatisfaction with
its partner (speech acts #11–12). If S# determines that its partner has benefitted
from the deviation (proficiency assessment), the expert transitions to state s7, while
telling its partner that it will punish him (speech act #13). S# stays in this

punishment phase and voices pleasure in reducing its partner’s payoffs (speech act
#14) until the punishment phase is complete. It then transitions out of the
punishment phase (into state s8) and expresses that it forgives its partner, and then
returns to states in which it renews behavioral expectations for its partner.

FSMs for other kinds of experts along with specific details for generating them,
are given in Supplementary Note 4.

Because S#’s speech generation is based on game-independent principles, the
FSMs for speech generation are the same for complex RSGs as they are for simple
(normal-form) RSGs. The exception to this statement is the expression of
behavioral expectations, which are expressed in normal-form games simply as
sequences of joint actions. However, more complex RSGs (such as the Block Game;
Fig. 6) have more complex joint strategies that are not as easily expressed in a
generic way that people understand. In these cases, S# uses game-invariant
descriptions of fairness to specify solutions, and then depends on its partner to
infer the details. It refers to a solution in which players get similar payoffs as a
“cooperative” or “fair” solution, and a solution in which one player scores higher
than the other as a solution in which “you (or I) get the higher payoff.”While not as
specific, our results demonstrate that such expressions can be sufficient to
communicate behavioral expectations.

While signaling via cheap talk has great potential to increase cooperation,
honestly signaling one’s internal states exposes a player to the potential of being
exploited. Furthermore, the so-called silent treatment is often used by humans as a
means of punishment and an expression of displeasure. For these two reasons, S#
also chooses not to speak when its proposals are repeatedly not followed by its
partner. The method describing how S# determines whether or not to voice speech
acts is described in Supplementary Note 4.

In short, S# essentially voices the stream of consciousness of its internal
decision-making mechanisms, which are tied to the aforementioned game-
independent principles. Since these principles also tend to be understandable to
humans and are present in all forms of RSGs, S#’s signal-generation mechanism
tends to achieve the three properties we desired to satisfy: game independence,
fidelity between signals and actions, and human understandability.

Responding to its partner: In addition to voicing cheap talk, the ability to
respond to a partner’s signals can substantially enhance one’s ability to quickly
coordinating on cooperative solutions (see Supplementary Note 4, including
Supplementary Table 12). When its partner signals a desire to play a particular
solution, S# uses proficiency assessment to determine whether it should consider
playing it. If this assessment indicates that the proposed solution could be a
desirable outcome to S#, it determines which of its experts play strategies consistent
(or congruent) with the proposed solution to further reduce the set of experts that
it considers following in that round (step 3 in Fig. 3a). Formally, let Econg (t) denote
the set of experts in round t that are congruent with the last joint plan proposed by
S#’s partner. Then, S# considers selecting experts from the set defined as:

EðtÞ ¼ fej 2 EcongðtÞ : ρjðtÞ � αðtÞg: ð5Þ

If this set is empty (i.e., no desirable options are congruent with the partner’s
proposal), E(t) is calculated as with S++ (Eq. 1).

The congruence of the partner’s proposed plan with an expert is determined by
comparing the strategy proposed by the partner with the solution espoused by the
expert. In the case of trigger strategies and expectant followers, we compare the
strategy proposed by the partner with the strategies’ offer. This is done rather easily
in normal-form games, as the partner can easily and naturally express its strategy as
a sequence of joint actions, which is then compared to the sequence of joint actions
of the expert’s offer. For general RSGs, however, this is more difficult because a
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joint action is viewed as a sequence of joint strategies over many stages. In this case,
S# must rely on high-level descriptions of the solution. For example, solutions
described as “fair” and “cooperative” can be assumed to be congruent with solutions
that have payoff profiles similar to those of the Nash bargaining solution.

Listening to its partner can potentially expose S# to being exploited. For
example, in a (0-1-3-5)-Prisoner’s Dilemma, a partner could continually propose
that both players cooperate, a proposal S# would continually accept and act on
when αti � 3. However, if the partner did not follow through with its proposal, it
could potentially exploit S# to some degree for a period of time. To avoid this, S#
listens to its partner less frequently the more the partner fails to follow through
with its own proposals. The method describing how S# determines whether or not
to listen to its partner is described in Supplementary Note 4.

User studies and statistical analysis. Three user studies were conducted as part
of this research. Complete details about these studies and the statistical analysis
used to analyze the results are given in Supplementary Notes 5–7.

Data availability. The data sets from our user studies, the computer code used to
generate the comparison of algorithms, and our implementation of S# can be
obtained by contacting Jacob Crandall.
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