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Machines powered by artificial intelligence increasingly mediate our social, cultural, economic and political interactions. 
Understanding the behaviour of artificial intelligence systems is essential to our ability to control their actions, reap 
their benefits and minimize their harms. Here we argue that this necessitates a broad scientific research agenda to study 
machine behaviour that incorporates and expands upon the discipline of computer science, and includes insights from 
across the sciences. We first outline a set of questions that are fundamental to this emerging field and then explore the 
technical, legal and institutional constraints on the study of machine behaviour.

i n his landmark 1969 book Sciences of the Artificial1,  
Nobel Laureate Herbert Simon wrote: “Natural 
science is knowledge about natural objects and 

phenomena. We ask whether there cannot also be 
‘artificial’ science—knowledge about artificial objects 
and phenomena.” In line with Simon’s vision, we describe the emergence 
of a interdisciplinary field of scientific study. This field is concerned with 
the scientific study of intelligent machines, not as engineering artefacts, 
but as a class of actors with particular behavioural patterns and ecol-
ogy. This field overlaps with, but is distinct from, computer science and 
robotics. It treats machine behaviour empirically. This is akin to how 
ethology and behavioural ecology study animal behaviour by integrating 
physiology and biochemistry—intrinsic properties—with the study of 
ecology and evolution—properties shaped by the environment. Animal 
and human behaviours cannot be fully understood without the study of 
the contexts in which behaviours occur. Machine behaviour similarly 
cannot be fully understood without the integrated study of algorithms 
and the social environments in which algorithms operate2.

At present, the scientists who study the behaviours of these virtual 
and embodied artificial intelligence (AI) agents are predominantly the 
same scientists who have created the agents themselves (throughout we 
use the term ‘AI agents’ liberally to refer to both complex and simple 
algorithms used to make decisions). As these scientists create agents to 
solve particular tasks, they often focus on ensuring the agents fulfil their 
intended function (although these respective fields are much broader than 
the specific examples listed here). For example, AI agents should meet a 
benchmark of accuracy in document classification, facial recognition or 
visual object detection. Autonomous cars must navigate successfully in a 
variety of weather conditions; game-playing agents must defeat a variety 
of human or machine opponents; and data-mining agents must learn 

which individuals to target in advertising campaigns 
on social media.

These AI agents have the potential to augment 
human welfare and well-being in many ways. Indeed, 
that is typically the vision of their creators. But a 

broader consideration of the behaviour of AI agents is now critical. AI 
agents will increasingly integrate into our society and are already involved 
in a variety of activities, such as credit scoring, algorithmic trading, local 
policing, parole decisions, driving, online dating and drone warfare3,4. 
Commentators and scholars from diverse fields—including, but not 
limited to, cognitive systems engineering, human computer interaction, 
human factors, science, technology and society, and safety engineering— 
are raising the alarm about the broad, unintended consequences of AI 
agents that can exhibit behaviours and produce downstream societal 
effects—both positive and negative—that are unanticipated by their 
creators5–8.

In addition to this lack of predictability surrounding the consequences 
of AI, there is a fear of the potential loss of human oversight over intel-
ligent machines5 and of the potential harms that are associated with the 
increasing use of machines for tasks that were once performed directly 
by humans9. At the same time, researchers describe the benefits that AI 
agents can offer society by supporting and augmenting human decision- 
making10,11. Although discussions of these issues have led to many important  
insights in many separate fields of academic inquiry12, with some high-
lighting safety challenges of autonomous systems13 and others studying 
the implications in fairness, accountability and transparency (for example, 
the ACM conference on fairness, accountability and transparency (https://
fatconference.org/)), many questions remain.

This Review frames and surveys the emerging interdisciplinary field 
of machine behaviour: the scientific study of behaviour exhibited by 
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intelligent machines. Here we outline the key research themes, questions 
and landmark research studies that exemplify this field. We start by pro-
viding background on the study of machine behaviour and the necessarily 
interdisciplinary nature of this science. We then provide a framework for 
the conceptualization of studies of machine behaviour. We close with a 
call for the scientific study of machine and human–machine ecologies 
and discuss some of the technical, legal and institutional barriers that are 
faced by researchers in this field.

Motivation for the study of machine behaviour
There are three primary motivations for the scientific discipline of 
machine behaviour. First, various kinds of algorithm operate in our 
society, and algorithms have an ever-increasing role in our daily activ-
ities. Second, because of the complex properties of these algorithms 
and the environments in which they operate, some of their attributes 
and behaviours can be difficult or impossible to formalize analytically. 
Third, because of their ubiquity and complexity, predicting the effects 
of intelligent algorithms on humanity—whether positive or negative—
poses a substantial challenge.

Ubiquity of algorithms
The current prevalence of diverse algorithms in society is unprece-
dented5 (Fig. 1). News-ranking algorithms and social media bots influ-
ence the information seen by citizens14–18. Credit-scoring algorithms 
determine loan decisions19–22. Online pricing algorithms shape the cost 
of products differentially across consumers23–25. Algorithmic trading 
software makes transactions in financial markets at rapid speed26–29. 
Algorithms shape the dispatch and spatial patterns of local policing30 
and programs for algorithmic sentencing affect time served in the 
penal system7. Autonomous cars traverse our cities31, and ride-sharing  
algorithms alter the travel patterns of conventional vehicles32. 
Machines map our homes, respond to verbal commands33 and per-
form regular household tasks34. Algorithms shape romantic matches 
for online dating services35,36. Machines are likely to increasingly sub-
stitute for humans in the raising of our young37 and the care for our 
old38. Autonomous agents are increasingly likely to affect collective 
behaviours, from group-wide coordination to sharing39. Furthermore, 
although the prospect of developing autonomous weapons is highly 
controversial, with many in the field voicing their opposition6,40, if such 
weapons end up being deployed, then machines could determine who 
lives and who dies in armed conflicts41,42.

Complexity and opacity of algorithms
The extreme diversity of these AI systems, coupled with their ubiquity, 
would by itself ensure that studying the behaviour of such systems poses 
a formidable challenge, even if the individual algorithms themselves 
were relatively simple. The complexity of individual AI agents is cur-
rently high and rapidly increasing. Although the code for specifying the 
architecture and training of a model can be simple, the results can be 
very complex, oftentimes effectively resulting in ‘black boxes’43. They are 
given input and produce output, but the exact functional processes that 
generate these outputs are hard to interpret even to the very scientists 
who generate the algorithms themselves44, although some progress in 
interpretability is being made45,46. Furthermore, when systems learn from 
data, their failures are linked to imperfections in the data or how data 
was collected, which has led some to argue for adapted reporting mech-
anisms for datasets47 and models48. The dimensionality and size of data 
add another layer of complexity to understanding machine behaviour49.

Further complicating this challenge is the fact that much of the 
source code and model structure for the most frequently used algo-
rithms in society is proprietary, as are the data on which these systems 
are trained. Industrial secrecy and legal protection of intellectual prop-
erty often surround source code and model structure. In many settings, 
the only factors that are publicly observable about industrial AI systems 
are their inputs and outputs.

Even when available, the source code or model structure of an AI 
agent can provide insufficient predictive power over its output. AI 

agents can also demonstrate novel behaviours through their interac-
tion with the world and other agents that are impossible to predict 
with precision50. Even when the analytical solutions are mathematically 
describable, they can be so lengthy and complex as to be indeciphera-
ble51,52. Furthermore, when the environment is changing—perhaps as 
a result of the algorithm itself—anticipating and analysing behaviour 
is made much harder.

Algorithms’ beneficial and detrimental effect on humanity
The ubiquity of algorithms, coupled with their increasing complexity, 
tends to amplify the difficulty of estimating the effects of algorithms 
on individuals and society. AI agents can shape human behaviours and 
societal outcomes in both intended and unintended ways. For example, 
some AI agents are designed to aid learning outcomes for children53 
and others are designed to assist older people38,54. These AI systems 
may benefit their intended humans by nudging those humans into 
better learning or safer mobility behaviours. However, with the power 
to nudge human behaviours in positive or intended ways comes the 
risk that human behaviours may be nudged in costly or unintended 
ways—children could be influenced to buy certain branded products 
and elders could be nudged to watch certain television programs.

The way that such algorithmic influences on individual humans 
scales into society-wide effects, both positive and negative, is of critical 
concern. As an example, the exposure of a small number of individuals 
to political misinformation may have little effect on society as a whole. 
However, the effect of the insertion and propagation of such misin-
formation on social media may have more substantial societal conse-
quences55–57. Furthermore, issues of algorithmic fairness or bias58,59 
have been already documented in diverse contexts, including computer 
vision60, word embeddings61,62, advertising63, policing64, criminal jus-
tice7,65 and social services66. To address these issues, practitioners will 
sometimes be forced to make value trade-offs between competing and 
incompatible notions of bias58,59 or between human versus machine 
biases. Additional questions regarding the effect of algorithms remain, 
such as how online dating algorithms alter the societal institution of 
marriage35,36 and whether there are systemic effects of increasing inter-
action with intelligent algorithms on the stages and speed of human 
development53. These questions become more complex in ‘hybrid 
systems’ composed of many machines and humans interacting and 
manifesting collective behaviour39,67. For society to have input into and 
oversight of the downstream consequences of AI, scholars of machine 
behaviour must provide insights into how these systems work and the 
benefits, costs and trade-offs presented by the ubiquitous use of AI in 
society.

The interdisciplinary study of machine behaviour
To study machine behaviour—especially the behaviours of black box 
algorithms in real-world settings—we must integrate knowledge from 
across a variety of scientific disciplines (Fig. 2). This integration is cur-
rently in its nascent stages and has happened largely in an ad hoc fash-
ion in response to the growing need to understand machine behaviour. 
Currently, the scientists who most commonly study the behaviour of 
machines are the computer scientists, roboticists and engineers who 
have created the machines in the first place. These scientists may be 
expert mathematicians and engineers; however, they are typically 
not trained behaviourists. They rarely receive formal instruction on 
experimental methodology, population-based statistics and sampling 
paradigms, or observational causal inference, let alone neuroscience, 
collective behaviour or social theory. Conversely, although behavioural 
scientists are more likely to possess training in these scientific methods, 
they are less likely to possess the expertise required to proficiently eval-
uate the underlying quality and appropriateness of AI techniques for 
a given problem domain or to mathematically describe the properties 
of particular algorithms.

Integrating scientific practices from across multiple fields is not easy. 
Up to this point, the main focus of those who create AI systems has 
been on crafting, implementing and optimizing intelligent systems to 
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perform specialized tasks. Excellent progress has been made on bench-
mark tasks—including board games such as chess68, checkers69 and 
Go70,71, card games such as poker72, computer games such as those on 
the Atari platform73, artificial markets74 and Robocup Soccer75—as 
well as standardized evaluation data, such as the ImageNet data for 
object recognition76 and the Microsoft Common Objects in Context 
data for image-captioning tasks77. Success has also been achieved in 
speech recognition, language translation and autonomous locomotion. 
These benchmarks are coupled with metrics to quantify performance 
on standardized tasks78–81 and are used to improved performance, a 
proxy that enables AI builders to aim for better, faster and more-robust 
algorithms.

But methodologies aimed at maximized algorithmic performance 
are not optimal for conducting scientific observation of the properties 
and behaviours of AI agents. Rather than using metrics in the service 
of optimization against benchmarks, scholars of machine behaviour are 
interested in a broader set of indicators, much as social scientists explore 
a wide range of human behaviours in the realm of social, political or 

economic interactions82. As such, scholars of machine behaviour spend 
considerable effort in defining measures of micro and macro outcomes 
to answer broad questions such as how these algorithms behave in dif-
ferent environments and whether human interactions with algorithms 
alter societal outcomes. Randomized experiments, observational 
inference and population-based descriptive statistics—methods that 
are often used in quantitative behavioural sciences—must be central 
to the study of machine behaviour. Incorporating scholars from out-
side of the disciplines that traditionally produce intelligent machines 
can provide knowledge of important methodological tools, scientific 
approaches, alternative conceptual frameworks and perspectives on the 
economic, social and political phenomena that machines will increas-
ingly influence.

Type of question and object of study
Nikolaas Tinbergen, who won the 1973 Nobel Prize in Physiology or 
Medicine alongside Karl von Frisch and Konrad Lorenz for founding 
the field of ethology, identified four complementary dimensions of 
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• Does the algorithm create filter bubbles?
• Does the algorithm disproportionately censor content?

Algorithmic justice

Democracy

News ranking algorithms

• Does the algorithm discriminate against a racial group in 
granting parole?

• Does a predictive policing system increase the false   
 conviction rate?

• How aggressively does the car overtake other vehicles?
• How does the car distribute risk between passengers 

and pedestrians?

Autonomous weapons

Kinetics

Autonomous vehicles

• Does the weapon respect necessity and proportionality in 
its use of force? 

• Does the weapon distinguish between combatants and 
civilians?

• Do algorithms manipulate markets?
• Does the behaviour of the algorithm increase systemic 

risk of market crash?

Algorithmic pricing

Markets

Algorithmic trading

• Do algorithms of competitors collude to fix prices? 
• Does the algorithm exhibit price discrimination?

• Does the matching algorithm use facial features?
• Does the matching algorithm amplify or reduce 

homophily?

Conversational robots

Society

Online dating

• Does the robot promote products to children? 
• Does the algorithm affect collective behaviours?

Fig. 1 | Examples of questions that fall into the domain of machine behaviour. Questions of concern to machine behaviour span a wide variety of 
traditional scientific disciplines and topics.
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analysis that help to explain animal behaviour83. These dimensions 
concern questions of the function, mechanism, development and 
evolutionary history of a behaviour, and provide an organizing frame-
work for the study of animal and human behaviour. For example, this 
conceptualization distinguishes the study of how a young animal or 
human develops a type of behaviour from the evolutionary trajectory 
that selected for such behaviour in the population. The goal of these 
distinctions is not division but rather integration. Although it is not 
wrong to say that, for example, a bird’s song is explained by learning 
or by its specific evolutionary history, a complete understanding of the 
song will require both.

Despite fundamental differences between machines and animals, 
the behavioural study of machines can benefit from a similar classifi-
cation. Machines have mechanisms that produce behaviour, undergo 
development that integrates environmental information into behav-
iour, produce functional consequences that cause specific machines to 
become more or less common in specific environments and embody 
evolutionary histories through which past environments and human 
decisions continue to influence machine behaviour. Scholars of com-
puter science have already achieved substantial gains in understanding 
the mechanisms and development of AI systems, although many ques-
tions remain. Relatively less emphasis has been placed on the function 
and evolution of AI systems. We discuss these four topics in the next 
subsections and provide Fig. 3 as a summary84.

Mechanisms for generating behaviour
The proximate causes of a machine’s behaviour have to do with how 
the behaviour is observationally triggered and generated in specific 
environments. For example, early algorithmic trading programs used 
simple rules to trigger buying and selling behaviour85. More sophisti-
cated agents may compute strategies based on adaptive heuristics or 
explicit maximization of expected utility86. The behaviour of a rein-
forcement learning algorithm that plays poker could be attributed to 
the particular way in which it represents the state space or evaluates 
the game tree72, and so on.

A mechanism depends on both an algorithm and its environment. A 
more sophisticated agent, such as a driverless car, may exhibit particular 
driving behaviour—for example, lane switching, overtaking or signal-
ling to pedestrians. These behaviours would be generated according 
to the algorithms that construct driving policies87 and are also shaped 
fundamentally by features of the perception and actuation system of 
the car, including the resolution and accuracy of its object detection 
and classification system, and the responsiveness and accuracy of its 
steering, among other factors. Because many current AI systems are 

derived from machine learning methods that are applied to increasingly 
complex data, the study of the mechanism behind a machine’s behav-
iour, such as those mentioned above, will require continued work on 
interpretability methods for machine learning46,88,89.

Development of behaviour
In the study of animal or human behaviour, development refers to how 
an individual acquires a particular behaviour—for example, through 
imitation or environmental conditioning. This is distinct from longer-
term evolutionary changes.

In the context of machines, we can ask how machines acquire 
(develop) a specific individual or collective behaviour. Behavioural 
development could be directly attributable to human engineering or 
design choices. Architectural design choices made by the programmer 
(for example, the value of a learning rate parameter, the acquisition  
of the representation of knowledge and state, or a particular wiring of 
a convolutional neural network) determine or influence the kinds of 
behaviours that the algorithm exhibits. In a more complex AI system, 
such as a driverless car, the behaviour of the car develops over time, 
from software development and changing hardware components that 
engineers incorporate into its overall architecture. Behaviours can also 
change as a result of algorithmic upgrades pushed to the machine by its 
designers after deployment.

A human engineer may also shape the behaviour of the machine by 
exposing it to particular training stimuli. For instance, many image 
and text classification algorithms are trained to optimize accuracy on 
a specific set of datasets that were manually labelled by humans. The 
choice of dataset—and those features it represents60,61—can substan-
tially influence the behaviour exhibited by the algorithm.

Finally, a machine may acquire behaviours through its own experi-
ence. For instance, a reinforcement learning agent trained to maximize 
long-term profit can learn peculiar short-term trading strategies based 
on its own past actions and concomitant feedback from the market90. 
Similarly, product recommendation algorithms make recommenda-
tions based on an endless stream of choices made by customers and 
update their recommendations accordingly.

Function
In the study of animal behaviour, adaptive value describes how a behav-
iour contributes to the lifetime reproductive fitness of an animal. For 
example, a particular hunting behaviour may be more or less successful 
than another at prolonging the animal’s life and, relatedly, the number 
of mating opportunities, resulting offspring born and the probable 
reproductive success of the offspring. The focus on function helps us 
to understand why some behavioural mechanisms spread and persist 
while others decline and vanish. Function depends critically on the fit 
of the behaviour to environment.

In the case of machines, we may talk of how the behaviour fulfils a 
contemporaneous function for particular human stakeholders. The 
human environment creates selective forces that may make some 
machines more common. Behaviours that are successful (‘fitness’ 
enhancing) get copied by developers of other software and hardware 
or are sometimes engineered to propagate among the machines them-
selves. These dynamics are ultimately driven by the success of institu-
tions—such as corporations, hospitals, municipal governments and 
universities—that build or use AI. The most obvious example is pro-
vided by algorithmic trading, in which successful automated trading 
strategies could be copied as their developers move from company to 
company, or are simply observed and reverse-engineered by rivals.

These forces can produce unanticipated effects. For example, objec-
tives such as maximizing engagement on a social media site may lead 
to so-called filter bubbles91, which may increase political polarization 
or, without careful moderation, could facilitate the spread of fake news. 
However, websites that do not optimize for user engagement may not be 
as successful in comparison with ones that do, or may go out of business 
altogether. Similarly, in the absence of external regulation, autonomous 
cars that do not prioritize the safety of their own passengers may be 

Scienti�c study
of behaviour

Engineering
of AI

Machine
behaviour

New engineering practices

New scienti�c questions

New quantitative evidence
Study of impact
of technology

Fig. 2 | The interdisciplinarity of machine behaviour. Machine 
behaviour lies at the intersection of the fields that design and engineer AI 
systems and the fields that traditionally use scientific methods to study 
the behaviour of biological agents. The insights from machine behavioural 
studies provide quantitative evidence that can help to inform those fields 
that study the potential effects of technology on social and technological 
systems. In turn, those fields can provide useful engineering practices and 
scientific questions to fields that examine machine behaviours. Finally, 
the scientific study of behaviour helps AI scholars to make more precise 
statements about what AI systems can and cannot do.
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less attractive to consumers, leading to fewer sales31. Sometimes the 
function of machine behaviour is to cope with the behaviour of other 
machines. Adversarial attacks—synthetic inputs that fool a system into 
producing an undesired output44,92–94—on AI systems and the subse-
quent responses of those who develop AI to these attacks95 may pro-
duce complex predator–prey dynamics that are not easily understood 
by studying each machine in isolation.

These examples highlight how incentives created by external institu-
tions and economic forces can have indirect but substantial effects on 
the behaviours exhibited by machines96. Understanding the interaction 
between these incentives and AI is relevant to the study of machine 
behaviour. These market dynamics would, in turn, interact with other 
processes to produce evolution among machines and algorithms.

Evolution
In the study of animal behaviour, phylogeny describes how a behav-
iour evolved. In addition to its current function, behaviour is influ-
enced by past selective pressures and previously evolved mechanisms. 
For example, the human hand evolved from the fin of a bony fish. Its 
current function is no longer for swimming, but its internal structure 
is explained by its evolutionary history. Non-selective forces, such as 
migration and drift, also have strong roles in explaining relationships 
among different forms of behaviour.

In the case of machines, evolutionary history can also generate path 
dependence, explaining otherwise puzzling behaviour. At each step, 
aspects of the algorithms are reused in new contexts, both constrain-
ing future behaviour and making possible additional innovations. For 
example, early choices about microprocessor design continue to influ-
ence modern computing, and traditions in algorithm design—such 
as neural networks and Bayesian state–space models—build in many 
assumptions and guide future innovations by making some new algo-
rithms easier to access than others. As a result, some algorithms may 
attend to certain features and ignore others because those features were 
important in early successful applications. Some machine behaviour 
may spread because it is ‘evolvable’—easy to modify and robust to per-
turbations—similar to how some traits of animals may be common 
because they facilitate diversity and stability97.

Machine behaviour evolves differently from animal behaviour. Most 
animal inheritance is simple—two parents, one transmission event. 
Algorithms are much more flexible and they have a designer with 
an objective in the background. The human environment strongly 

influences how algorithms evolve by changing their inheritance sys-
tem. AI replication behaviour may be facilitated through a culture of 
open source sharing of software, the details of network architecture 
or underlying training datasets. For instance, companies that develop 
software for driverless cars may share enhanced open source libraries 
for object detection or path planning as well as the training data that 
underlie these algorithms to enable safety-enhancing software to spread 
throughout the industry. It is possible for a single adaptive ‘mutation’ 
in the behaviour of a particular driverless car to propagate instantly 
to millions of other cars through a software update. However, other 
institutions apply limits as well. For example, software patents may 
impose constraints on the copying of particular behavioural traits. And 
regulatory constraints—such as privacy protection laws—can prevent 
machines from accessing, retaining or otherwise using particular infor-
mation in their decision-making. These peculiarities highlight the fact 
that machines may exhibit very different evolutionary trajectories, as 
they are not bound by the mechanisms of organic evolution.

Scale of inquiry
With the framework outlined above and in Fig. 3, we now catalogue 
examples of machine behaviour at the three scales of inquiry: individual 
machines, collectives of machines and groups of machines embedded 
in a social environment with groups of humans in hybrid or heter-
ogeneous systems39 (Fig. 4). Individual-machine behaviour empha-
sizes the study of the algorithm itself, collective-machine behaviour 
emphasizes the study of interactions between machines and hybrid 
human–machine behaviour emphasizes the study of interactions 
between machines and humans. Here we can draw an analogy to the 
study of a particular species, the study of interactions among members 
of a species and the interactions of the species with their broader envi-
ronment. Analyses at any of these scales may address any or all of the 
questions described in Fig. 3.

Individual machine behaviour
The study of the behaviour of individual machines focuses on specific 
intelligent machines by themselves. Often these studies focus on prop-
erties that are intrinsic to the individual machines and that are driven 
by their source code or design. The fields of machine learning and 
software engineering currently conduct the majority of these studies. 
There are two general approaches to the study of individual machine 
behaviour. The first focuses on profiling the set of behaviours of any 

Collective

HybridScale of inquiry

Individual

Object of study

Dynamic view
Explanation of current form in terms
of a historical sequence

Type of
question Static view

Explanation of the current
behaviour of a machine

Development (ontogeny)
Developmental explanations of how a type of 
machine acquires its behaviour, from 
deliberate engineering and supervised learning 
based on speci�c benchmarks, to online 
learning and reinforcement learning in a 
particular environment.

Mechanism (causation)
Mechanistic explanations for what the 
behaviour is, and how it is constructed, 
including computational mechanisms 
or external stimuli that trigger it.

Proximate view 
How a particular
type of machine
functions

Ultimate
(evolutionary) view
Why a type of 
machine evolved
the behaviours it has

Evolution (phylogeny)
Incentives and market forces that describe 
why the behaviour evolved and spread, 
whether by programming or learning, 
subject to computational and institutional 
constraints.

Function (adaptive value)
The consequences of the machine’s 
behaviour in the current environment 
that cause it to persist, either by 
appeal for particular stakeholders 
(such as users or companies) or �t to 
some other aspect of the environment.

Fig. 3 | Tinbergen’s type of question and object of study modified for 
the study of machine behaviour. The four categories Tinbergen proposed 
for the study of animal behaviour can be adapted to the study of machine 
behaviour83,84. Tinbergen’s framework proposes two types of question, 

how versus why, as well as two views of these questions, dynamic versus 
static. Each question can be examined at three scales of inquiry: individual 
machines, collectives of machines and hybrid human–machine systems.
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specific machine agent using a within-machine approach, comparing 
the behaviour of a particular machine across different conditions. The 
second, a between-machine approach, examines how a variety of indi-
vidual machine agents behave in the same condition.

A within-machine approach to the study of individual machine 
behaviours investigates questions such as whether there are constants 
that characterize the within-machine behaviour of any particular AI 
across a variety of contexts, how the behaviour of a particular AI pro-
gresses over time in the same, or different, environments and which 
environmental factors lead to the expression of particular behaviours 
by machines.

For instance, an algorithm may only exhibit certain behaviours if 
trained on particular underlying data98–100 (Fig. 3). Then, the ques-
tion becomes whether or not an algorithm that scores probability 
of recidivism in parole decisions7 would behave in unexpected ways 
when presented with evaluation data that diverge substantially from 
its training data. Other studies related to the characterization of  
within-machine behaviour include the study of individual robotic  
recovery behaviours101,102, the ‘cognitive’ attributes of algorithms and the 
utility of using techniques from psychology in the study of algorithmic  
behaviour103, and the examination of bot-specific characteristics such 
as those designed to influence human users104.

The second approach to the study of individual machine behaviour 
examines the same behaviours as they vary between machines. For 
example, those interested in examining advertising behaviours of intel-
ligent agents63,105,106 may investigate a variety of advertising platforms 
(and their underlying algorithms) and examine the between-machine 
effect of performing experiments with the same set of advertising inputs 
across platforms. The same approach could be used for investigations 
of dynamic pricing algorithms23,24,32 across platforms. Other between- 
machine studies might look at the different behaviours used by  
autonomous vehicles in their overtaking patterns or at the varied  
foraging behaviours exhibited by search and rescue drones107.

Collective machine behaviour
In contrast the study of the behaviour of individual machines, the study 
of collective-machine behaviour focuses on the interactive and system- 
wide behaviours of collections of machine agents. In some cases, the 
implications of individual machine behaviour may make little sense 

until the collective level is considered. Some investigations of these 
systems have been inspired by natural collectives, such as swarms of 
insects, or mobile groups, such as flocking birds or schooling fish. For 
example, animal groups are known to exhibit both emergent sensing  
of complex environmental features108 and effective consensus  
decision-making109. In both scenarios, groups exhibit an awareness of 
the environment that does not exist at the individual level. Fields such 
as multi-agent systems and computational game theory provide useful 
examples of the study of this area of machine behaviour.

Robots that use simple algorithms for local interactions between bots 
can nevertheless produce interesting behaviour once aggregated into 
large collectives. For example, scholars have examined the swarm-like 
properties of microrobots that combine into aggregations that resem-
ble swarms found in systems of biological agents110,111. Additional 
examples include the collective behaviours of algorithms both in the 
laboratory (in the Game of Life112) as well as in the wild (as seen in 
Wikipedia-editing bots113). Other examples include the emergence 
of novel algorithmic languages114 between communicating intelli-
gent machines as well as the dynamic properties of fully autonomous 
transportation systems. Ultimately, many interesting questions in this 
domain remain to be examined.

The vast majority of work on collective animal behaviour and col-
lective robotics has focused on how interactions among simple agents 
can create higher-order structures and properties. Although important, 
this neglects that fact that many organisms, and increasingly also AI 
agents75, are sophisticated entities with behaviours and interactions 
that may not be well-characterized by simplistic representations. 
Revealing what extra properties emerge when interacting entities 
are capable of sophisticated cognition remains a key challenge in 
the biological sciences and may have direct parallels in the study of 
machine behaviour. For example, similar to animals, machines may 
exhibit ‘social learning’. Such social learning does not need be limited 
to machines learning from machines, but we may expect machines to 
learn from humans, and vice versa for humans to learn from the behav-
iour of machines. The feedback processes introduced may fundamen-
tally alter the accumulation of knowledge, including across generations, 
directly affecting human and machine ‘culture’.

In addition, human-made AI systems do not necessarily face the 
same constraints as do organisms, and collective assemblages of 
machines provide new capabilities, such as instant global communi-
cation, that can lead to entirely new collective behavioural patterns. 
Studies in collective machine behaviour examine the properties of 
assemblages of machines as well as the unexpected properties that can 
emerge from these complex systems of interactions.

For example, some of the most interesting collective behaviour 
of algorithms has been observed in financial trading environments. 
These environments operate on tiny time scales, such that algorithmic 
traders can respond to events and each other ahead of any human 
trader115. Under certain conditions, high-frequency capabilities can 
produce inefficiencies in financial markets26,115. In addition to the 
unprecedented response speed, the extensive use of machine learning, 
autonomous operation and ability to deploy at scale are all reasons 
to believe that the collective behaviour of machine trading may be 
qualitatively different than that of human traders. Furthermore, these 
financial algorithms and trading systems are necessarily trained on 
certain historic datasets and react to a limited variety of foreseen sce-
narios, leading to the question of how they will react to situations that 
are new and unforeseen in their design. Flash crashes are examples of 
clearly unintended consequences of (interacting) algorithms116,117; 
leading to the question of whether algorithms could interact to create 
a larger market crisis.

Hybrid human–machine behaviour
Humans increasingly interact with machines16. They mediate our social 
interactions39, shape the news14,17,55,56 and online information15,118 that 
we see, and form relationships with us that can alter our social systems. 
Because of their complexity, these hybrid human–machine systems 
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Fig. 4 | Scale of inquiry in the machine behaviour ecosystem. AI systems 
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on the data, in turn influencing how humans generate data. AI systems 
collectively interact with and influence one another. Human interactions 
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pose one of the most technically difficult yet simultaneously most 
important areas of study for machine behaviour.

Machines shape human behaviour
One of the most obvious—but nonetheless vital—domains of the study 
of machine behaviour concerns the ways in which the introduction of 
intelligent machines into social systems can alter human beliefs and 
behaviours. As in the introduction of automation to industrial pro-
cesses119, intelligent machines can create social problems in the process 
of improving existing problems. Numerous problems and questions 
arise during this process, such as whether the matching algorithms that 
are used for online dating alter the distributional outcomes of the dating 
process or whether news-filtering algorithms alter the distribution of 
public opinion. It is important to investigate whether small errors in 
algorithms or the data they that they use could compound to produce 
society-wide effects and how intelligent robots in our schools, hospi-
tals120 and care centres might alter human development121 and quality 
of life54 and potentially affect outcomes for people with disabilities122.

Other questions in this domain relate to the potential for machines 
to alter the social fabric in more fundamental ways. For example, ques-
tions include to what extent and what ways are governments using 
machine intelligence to alter the nature of democracy, political account-
ability and transparency, or civic participation. Other questions include 
to what degree intelligent machines influence policing, surveillance 
and warfare, as well as how large of an effect bots have had on the out-
comes of elections56 and whether AI systems that aid in the formation 
of human social relationships can enable collective action.

Notably, studies in this area also examine how humans perceive the 
use of machines as decision aids8,123, human preferences for and against 
making use of algorithms124, and the degree to which human-like 
machines produce or reduce discomfort in humans39,125. An important 
question in this area includes how humans respond to the increasing 
coproduction of economic goods and services in tandem with intelli-
gent machines126. Ultimately, understanding how human systems can 
be altered by the introduction of intelligent machines into our lives is 
a vital component of the study of machine behaviour.

Humans shape machine behaviour
Intelligent machines can alter human behaviour, and humans also cre-
ate, inform and mould the behaviours of intelligent machines. We shape 
machine behaviours through the direct engineering of AI systems and 
through the training of these systems on both active human input and 
passive observations of human behaviours through the data that we 
create daily. The choice of which algorithms to use, what feedback to 
provide to those algorithms3,127 and on which data to train them are 
also, at present, human decisions and can directly alter machine behav-
iours. An important component in the study of machine behaviour 
is to understand how these engineering processes alter the resulting 
behaviours of AI, whether the training data are responsible for a par-
ticular behaviour of the machine, whether it is the algorithm itself or 
whether it is a combination of both algorithm and data. The framework 
outlined in Fig. 3 suggests that there will be complementary answers 
to the each of these questions. Examining how altering the parame-
ters of the engineering process can alter the subsequent behaviours 
of intelligent machines as they interact with other machines and with 
humans in natural settings is central to a holistic understanding of 
machine behaviour.

Human–machine co-behaviour
Although it can be methodologically convenient to separate studies 
into the ways that humans shape machines and vice versa, most AI sys-
tems function in domains where they co-exist with humans in complex 
hybrid systems39,67,125,128. Questions of importance to the study of these 
systems include those that examine the behaviours that characterize 
human–machine interactions including cooperation, competition and 
coordination—for example, how human biases combine with AI to 
alter human emotions or beliefs14,55,56,129,130, how human tendencies 

couple with algorithms to facilitate the spread of information55, how 
traffic patterns can be altered in streets populated by large numbers of 
both driverless and human-driven cars and how trading patterns can 
be altered by interactions between humans and algorithmic trading 
agents29 as well as which factors can facilitate trust and cooperation 
between humans and machines88,131.

Another topic in this area relates to robotic and software-driven 
automation of human labour132. Here we see two different types of 
machine–human interactions. One is that machines can enhance a 
human’s efficiency, such as in robotic- and computer-aided surgery. 
Another is that machines can replace humans, such as in driverless 
transportation and package delivery. This leads to questions about 
whether machines end up doing more of the replacing or the enhanc-
ing in the longer run and what human–machine co-behaviours will 
evolve as a result.

The above examples highlight that many of the questions that relate 
to hybrid human–machine behaviours must necessarily examine the 
feedback loops between human influence on machine behaviour and 
machine influence on human behaviour simultaneously. Scholars have 
begun to examine human–machine interactions in formal laboratory 
environments, observing that interactions with simple bots can increase 
human coordination39 and that bots can cooperate directly with 
humans at levels that rival human–human cooperation133. However, 
there remains an urgent need to further understand feedback loops in 
natural settings, in which humans are increasingly using algorithms 
to make decisions134 and subsequently informing the training of the 
same algorithms through those decisions. Furthermore, across all types 
of questions in the domain of machine behavioural ecology, there is 
a need for studies that examine longer-run dynamics of these hybrid 
systems53 with particular emphasis on the ways that human social 
interactions135,136 may be modified by the introduction of intelligent 
machines137.

Outlook
Furthering the study of machine behaviour is critical to maximizing the 
potential benefits of AI for society. The consequential choices that we 
make regarding the integration of AI agents into human lives must be 
made with some understanding of the eventual societal implications of 
these choices. To provide this understanding and anticipation, we need 
a new interdisciplinary field of scientific study: machine behaviour.

For this field to succeed, there are a number of relevant consid-
erations. First, studying machine behaviour does not imply that AI 
algorithms necessarily have independent agency nor does it imply algo-
rithms should bear moral responsibility for their actions. If a dog bites 
someone, the dog’s owner is held responsible. Nonetheless, it is useful 
to study the behavioural patterns of animals to predict such aberrant 
behaviour. Machines operate within a larger socio-technical fabric, and 
their human stakeholders are ultimately responsible for any harm their 
deployment might cause.

Second, some commentators might suggest that treating AI systems 
as agents occludes the focus on the underlying data that such AI sys-
tems are trained on. Indeed, no behaviour is ever fully separable from 
the environmental data on which that agent is trained or developed; 
machine behaviour is no exception. However, it is just as critical to 
understand how machine behaviours vary with altered environmental 
inputs as it is to understand how biological agents’ behaviours vary 
depending on the environments in which they exist. As such, scholars 
of machine behaviour should focus on characterizing agent behaviour 
across diverse environments, much as behavioural scientists desire to 
characterize political behaviours across differing demographic and 
institutional contexts.

Third, machines exhibit behaviours that are fundamentally different 
from animals and humans, so we must avoid excessive anthropomor-
phism and zoomorphism. Even if borrowing existing behavioural sci-
entific methods can prove useful for the study of machines, machines 
may exhibit forms of intelligence and behaviour that are qualitatively  
different—even alien—from those seen in biological agents. 
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Furthermore, AI scientists can dissect and modify AI systems more 
easily and more thoroughly than is the case for many living systems. 
Although parallels exist, the study of AI systems will necessarily differ 
from the study of living systems.

Fourth, the study of machine behaviour will require cross-discipli-
nary efforts82,103 and will entail all of the challenges associated with 
such research138,139. Addressing these challenges is vital140. Universities 
and governmental funding agencies can play an important part in the 
design of large-scale, neutral and trusted cross-disciplinary studies141.

Fifth, the study of machine behaviour will often require experimen-
tal intervention to study human–machine interactions in real-world 
settings142,143. These interventions could alter the overall behaviour of 
the system, possibly having adverse effects on normal users144. Ethical 
considerations such as these need careful oversight and standardized 
frameworks.

Finally, studying intelligent algorithmic or robotic systems can result 
in legal and ethical problems for researchers studying machine behav-
iour. Reverse-engineering algorithms may require violating the terms 
of service of some platforms; for example, in setting up fake personas 
or masking true identities. The creators or maintainers of the systems 
of interest could embroil researchers in legal challenges if the research 
damages the reputation of their platforms. Moreover, it remains unclear 
whether violating terms of service may expose researchers to civil or 
criminal penalties (for example, through the Computer Fraud and 
Abuse Act in the United States), which may further discourage this 
type of research145.

Understanding the behaviours and properties of AI agents—and the 
effects they might have on human systems—is critical. Society can ben-
efit tremendously from the efficiencies and improved decision-making 
that can come from these agents. At the same time, these benefits may 
falter without minimizing the potential pitfalls of the incorporation of 
AI agents into everyday human life.
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