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A fine-grained dual-process approach to conditional reasoning is advocated: Responses to
conditional syllogisms are reached through the operation of either one of two systems, each
of which can rely on two different mechanisms. System1 relies either on pragmatic implica-
tures or on the retrieval of information from semantic memory; System2 operates first through
inhibition of System1, then (but not always) through activation of analytical processes. It
follows that reasoners will fall into one of four groups of increasing reasoning ability, each
group being uniquely characterized by (a) the modal pattern of individual answers to blocks
of affirming the consequent, denying the antecedent, and modus tollens syllogisms featuring
the same conditional; and (b) the average rate of determinate answers to , , and . This
account receives indirect support from the extant literature, and direct support from a mixed
Rasch model of responses given to 18 syllogisms by 486 adult reasoners.

The capacity to solve conditional syllogisms is considered
the cornerstone of both deductive ability and hypothetical
thinking (Evans & Over, 2004), and psychological studies
abound on how and how well reasoners answer the four stan-
dard problems called modus ponens (if p then q, p), modus
tollens (if p then q, not−q), affirming the consequent (if p
then q, q), and denying the antecedent (if p then q, not−p).
Henceforth, these four problems will be abbreviated , ,
, and , respectively. Considering that almost everyone
solves  correctly most of the time by drawing the conclu-
sion ‘q’ we will focus on responses to , , and ; from
the perspective of standard deductive logic, the determinate
conclusion ‘not−p’ is correct for , and the undeterminate
response ‘one cannot draw any conclusion’ is correct for 
and .1

In this article, we will elaborate a fine-grained dual-
process account of how reasoners solve these three problems,
define the psychometric model that reflects this account, and
test that model against answers given by an unusually large
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sample of adult reasoners varying widely in age, occupation,
and education. We will in particular argue that our approach
to statistical modelling, that is, the use of mixed Rasch mod-
els, is uniquely suited to evaluate a complex dual-process
account of reasoning because it allows for the simultaneous
modelling of qualitative and quantitative differences between
individuals.

Dual-Process Conditional
Reasoning

Dual-process theories of reasoning (Evans & Over, 1996;
Sloman, 1996; Stanovich, 1999) assume that inferences can
reflect, at different times, the operation of one set of men-
tal processes (System1) or the other (System2). The fast,
association-driven System1 is triggered whenever it encoun-
ters information it can process and is rather undemanding of
cognitive resources. The analytic and reason-oriented Sys-
tem2 must be deliberately engaged and controlled, is slow,
and demanding of capacity. System1 operates on contex-
tualized tasks, taking into account semantic content and con-
versational principles. The operation of System2, in contrast,
depends on the decontextualization of the task, and on the ac-
tivation of abstract rules of inference. Dual-process accounts
of conditional reasoning (Best, 2005; Klaczynski & Daniel,
2005; Klaczynski, Schuneman, & Daniel, 2004; Schroyens,
Schaeken, & Handley, 2003) usually adopt a coarse-grained
approach with respect to System1 and System2 processes.
While students of conditional reasoning pay heed to the fact

1 Please note that every time we write of a ‘correct’ conclusion
or answer, we mean an answer that is correct from the perspective
of deductive logic. Similarly, when we speak of reasoners of high or
low ability, we never mean more than high or low ability at giving
logically correct answers. We do not mean anything as general as,
e.g., intelligence.
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that System1 derives conclusions from semantic content or
pragmatic implicatures, the distinction between these two in-
fluences is seldom pushed further. Similarly, while it is ac-
knowledged that System2 operates first by inhibiting Sys-
tem1 processes, then by recruiting abstract rules of infer-
ence, the consequences of this distinction are rarely consid-
ered (see, however, Evans & Over, 2004, chapter 9).

We suggest taking a more fine-grained approach to Sys-
tem1 and System2 processes in conditional reasoning. More
precisely, we will argue that responses to conditional syllo-
gisms are not solely determined by whether they are the re-
sult of System1 or System2 processing: Implicature-based,
pragmatic System1 does not always yield the same answer
as content-based, semantic System1. Likewise, the answer
yielded by System2 will depend on whether it is only the
result of the inhibition of System1 output, or whether an ab-
stract rule of inference was actively recruited to generate a
conclusion. This account has precise consequences for the
measurement of conditional reasoning abilities. Not only
it supposes continuous differences between individuals (as
usual in the assessment of most cognitive achievements), but
it also supposes structural, qualitative differences. Reason-
ers cannot simply be ordered on an ability continuum, but
they have to be qualitatively compared with respect to their
response process, that is, with respect to the reasoning sub-
system that underlies their answers. Quantitative differences
will then be found within each qualitative subpopulation of
reasoners.

We will now give a detailed account of the various re-
sponses we expect from pragmatic System1, semantic Sys-
tem1, inhibitory System2, and generative System2 (see Ta-
ble 1 for a summary). Then, we will seek evidence in the
extant literature for the existence of these four subgroups.
Next, we will present the analysis of the responses to 18 con-
ditional syllogisms with the mixed Rasch model that exactly
reflects our theoretical proposal.

Pragmatic or Semantic System1

Conversational pragmatics has been shown to affect con-
ditional reasoning on a variety of problems (Bonnefon &
Hilton, 2002, 2004; Bonnefon & Villejoubert, 2007; Steven-
son & Over, 2001). In particular, pragmatics can affect even
the simplest conditional reasoning problems by means of in-
vited inferences: The pragmatic principles that govern con-
versation are such that the assertion of a conditional ‘if p,
then q’ invites its converse ‘if q then p’ and its obverse ‘if
not−p then not−q’ (Geis & Zwicky, 1971). These conversa-
tional implicatures do invite the determinate answer to  and
, but do not directly invite the  inference from not−q to
not−p. Pragmatic implicatures thus licence the determinate
response to  and , but not to . Hence, reasoners who
rely solely on pragmatic System1 processing should, as a
group, show high endorsement rates of the determinate an-
swer to  and , and a low endorsement rate of the deter-
minate answer to . This group should be characterized by
the ‘all-wrong’ individual pattern of responses: For a given
triple of , , and  syllogisms featuring the same con-

ditional statement, reasoners applying pragmatic principles
should most often give normatively incorrect answers to all
three , , and .

Predictions are different with respect to reasoners who
rely on the semantic System1, that is, individuals whose rea-
soning is affected by their background knowledge about the
semantic content of the conditional. It has been repeatedly
shown (Bonnefon & Hilton, 2002; Cummins, 1995; Cum-
mins, Lubart, Alksnis, & Rist, 1991; Markovits & Quinn,
2002; De Neys, Schaeken, & d’Ydewalle, 2003; Politzer &
Bonnefon, 2006; Thompson, 1994, 1995) that responses to
, , and  are affected by the retrieval of some specific
type of information in semantic memory, and this influence
is usually attributed to System1 processing (Evans, 2002;
Evans & Over, 1996, 2004; Stanovich & West, 2000).2 More
precisely, endorsement of the determinate answer to  and
 is negatively affected by the retrieval of alternatives (i.e.,
possible ways for the consequent of the conditional to occur
when its antecedent is false), and endorsement of the deter-
minate answer to  is negatively affected by the retrieval of
disablers (i.e., possible ways for the consequent to be false
although the antecedent is true).

Semantic System1 reasoners will thus endorse determi-
nate answers on , , and  as a function of the number of
alternatives and disablers that come to mind, depending on
the conditional. Endorsement of  and  will not be as fre-
quent as it is for the pragmatic System1 group—endorsement
of , on the other hand, will be more frequent. No individ-
ual response pattern should be dominant in this group, as the
response pattern will, for each conditional, be a function of
the number of alternatives and disablers it evokes. Because
the number of determinate responses depends on background
knowledge, and because large individual differences in back-
ground knowledge can be expected, large quantitative indi-
vidual differences in this subgroup are likely to be found.

Inhibitory or Generative System2
System2 is believed to operate on decontextualized

premises, through the inhibition of background knowledge
about their pragmatic and semantic aspects (Handley, Capon,
Beveridge, Dennis, & Evans, 2005; De Neys et al., 2005; Si-
moneau & Markovits, 2003—see also Goel, Buchel, Frith,
& Dolan, 2000; Goel & Dolan, 2003, for neuroimagery ev-
idence). Inhibition of background knowledge will particu-
larly discourage the endorsement of the determinate answer
to  and . The endorsement of the determinate answer to
, on the other hand, will depend on whether System2 rea-
soners can recruit an abstract strategy for reductio ad absur-
dum (Best, 2005; Evans & Over, 2004); and not all reasoners
will be sophisticated enough to do so.

Reasoners who only rely on the inhibition of background
knowledge will thus (a) block the determinate answers to 

2 This might become a point of contention, as De Neys,
Schaeken, and d’Ydewalle (2005) and Verschueren, Schaeken, and
d’Ydewalle (in press) have recently considered the possibility that
this influence might operate partly through conscious, cognitively
demanding System2 processes.
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Table 1
Characterization of the Four Groups by System of Reasoning, and Mechanism Engaged Within this System (‘mod.’ is the
abbreviation of moderate).

System1 System2
Pragmatic Semantic Inhibitory Generative

Modal pattern all-wrong none all-blocked all-correct
Rate of correct AC low mod. high high
Rate of correct DA low mod. high high
Rate of correct MT low mod. low high
Ability low low/mod. mod./high high

and , and (b) endorse the undeterminate answer to , for
lack of a strategy that would allow them to derive the deter-
minate answer. As a consequence, the group of inhibitory
System2 reasoners should be characterized by low endorse-
ment rates of the determinate answer to , , and , and
by the ‘all-blocked’ individual pattern of responses: For a
given triple of , , and  syllogisms featuring the same
conditional statement, reasoners in this group should most
often endorse the undeterminate answer to all three , ,
and . In psychometric terms, this means that these reason-
ers should find it more difficult to give a logically correct an-
swer to  syllogisms than to  and  syllogisms featuring
the same conditional. From a quantitative perspective, mid
to high ability scores are expected from this subpopulation.

Finally, the most sophisticated reasoners (who have access
to an abstract reductio strategy) will reject the determinate
answer to  and  (for they inhibit System1 responses), and
endorse the determinate answer to  (which was actively
generated by reductio). Hence, generative System2 reason-
ers should be characterized by low endorsement rates of the
determinate answer to  and , and high endorsement rate
of the determinate answer to . This group should also be
characterized by the ‘all-correct’ individual response pattern:
For a given triple of , , and  syllogisms featuring the
same conditional, reasoners in this group should most often
endorse the normatively correct answer to all three, , ,
and . Hence, in psychometric terms, we do not expect
differences between the difficulties of , , and  syllo-
gisms featuring the same conditional. Quite strikingly, that
means that this group is structurally equivalent to the prag-
matic System1 group, as no qualitative differences exist be-
tween the two groups. However, individuals in the generative
System2 group should show high ability values, compared to
the low ability values expected from the pragmatic System1
group. Thus, even though qualitative differences are not ex-
pected between the pragmatic System1 and generative Sys-
tem2 groups, these two groups should be clearly different in
quantitative terms.

In summary, we expect quantitative and qualitative dif-
ferences between individuals solving conditional reasoning
tasks. Ideally, we expect three qualitative groups of indi-
viduals. In the first group, reasoners should find it equally
difficult to give a logically correct answer to , , and .
However, this group should split in two quantitatively dis-
tinct subgroups: (a) pragmatic System1 reasoners who sys-

tematically give the logically incorrect answer to all syllo-
gisms, and show comparatively low abilities; and (b) gen-
erative System2 reasoners who systematically give the log-
ically correct answer to all syllogisms, and show compara-
tively high abilities.

In the second group (semantic System1 reasoners), we ex-
pect responses to be largely influenced by the semantic con-
tent of the conditionals: Differences should be found in the
difficulties of , , and , albeit not in a systematic way.
Semantic System1 reasoners should have mid to low ability
scores. Finally, in the third group (inhibitory System2 rea-
soners), we expect that  will be solved less easily than 
and . Inhibitory System2 reasoners should have mid to
high ability scores.

Prior empirical support

Our account is consistent with existing results that show a
monotonic decrease of determinate responses to  and  in
developmental studies (Barouillet, Grosset, & Lecas, 2000;
Markovits, Fleury, Quinn, & Venet, 1998) or as a function
of increasing cognitive capacity (Newstead, Handley, Harley,
Wright, & Farelly, 2004). On the other hand, our account
does not expect any simple monotonic relation to hold be-
tween cognitive sophistication and the rate of determinate
responses to . Indeed, Newstead et al. (2004) observed
a very weak linear correlation between endorsement of 
and cognitive ability, and Evans, Handley, Neilens, and Over
(2006) observed that endorsement of  appeared to sharply
decrease with reasoning sophistication. Furthermore, a num-
ber of authors (Barouillet et al., 2000; Rumain, Connell, &
Braine, 1983; O’Brien & Overton, 1980, 1982) have ob-
served a puzzling developmental trend in the endorsement
of : In broad agreement with our account, determinate re-
sponses to  appear to increase and peak in preadolescent
years, then to decrease with adult age. This developmen-
tal trend would correspond in our framework to a shift from
pragmatic to semantic System1, then to inhibitory System2
in adult age. It is noteworthy that the studies we have men-
tioned so far do not report the second peak of  endorsement
we would expect with the shift from inhibitory System2 pro-
cessing to generative System2 processing. We suspect that
this might be due to sample size limitations, as the group of
generative System2 reasoners might be too small to compen-
sate for the larger group of inhibitory System2 reasoners.
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In any case, these results only offer indirect support to our
account. To make a direct case for our proposal, we need
to move from correlational studies to classification studies.
That is, instead of looking at bivariate correlations between
responses to conditional syllogisms and measures of cogni-
tive sophistication, we need a typological approach for clas-
sifying individuals with respect to the qualitative and quan-
titative differences they manifest when solving conditional
syllogisms.

Contemporary psychometrics can provide us with the tool
we need to conduct a qualitative classification, namely, latent
class analysis (Goodman, 1974; Lazarsfeld & Henry, 1968;
Rost & Langeheine, 1997). Latent class analysis can be used
to identify distinct subpopulations from multivariate categor-
ical data (in this case, answers to conditional syllogisms) and
to assign individuals to their most likely subpopulation.

To the best of our knowledge, only two studies have ap-
plied latent class analysis to conditional reasoning. Rijmen
and De Boeck (2003) analysed responses of high-school stu-
dents to complex conditional reasoning problems, combin-
ing one of the four elementary inferences (, , , )
with another component such as conjunction or disjunction.
A first analysis was run on - and -based problems, which
yielded two latent classes; these classes were interpreted as
corresponding to a material vs. biconditional interpretation
of conditional statements. A separate analysis was conducted
on - and -based problems. This analysis again yielded
two classes. Members of the second class had relatively more
difficulties with , but also higher general propositional
reasoning ability. Spiel, Gittler, Sirsch, and Glück (1997)
gave early adolescents a set of eight conditional syllogisms
to solve, corresponding to one abstract instance and one con-
crete instance of , , , and . Latent class analysis
yielded two classes that mainly differ in the rate of determi-
nate responses to  and .

These two studies revealed important insights into the
cognitive stages early and late adolescents go through with
respect to conditional reasoning. Both studies show that
there are strong qualitative differences between individuals.
However, they assume that all quantitative differences can be
explained by the two classes, since ability differences are not
allowed within classes. In other words, they both assume
that all interindividual differences can be explained by a di-
chotomy in ability.

Additionally, using two conditional statements only, as in
the study of Spiel et al. (1997), seems insufficient to con-
trol for content effects. Finally, since our predictions concern
the general pattern of answers to , , and  syllogisms,
we need to run one general latent class analysis, rather than
the two separate analyses of Rijmen and De Boeck (2003).
The study we now report was designed and conducted to
deal with these concerns. Our study goes beyond previous
important empirical works by (a) integrating qualitative and
quantitative individual differences, (b) developing and test-
ing a general model comprising all three syllogisms, and (c)
allowing the analysis of content effects. Instead of applying
latent class analysis, we will use mixed Rasch models, an in-
tegration of latent class analysis and the Rasch one-parameter

logistic test model, that allow the consideration of qualitative
and quantitative differences simultaneously.

Methods

Participants, material, and procedure

Participants were recruited by third-year psychology stu-
dents as a course requirement. Each student made a list
of several men and women who were older than 18, not
studying psychology, and willing to take part in a survey on
reasoning—no other restriction applied, e.g., family mem-
bers were permitted. Each student then randomly selected
one male and one female participant from this list. It was ex-
pected that this recruitment procedure would promote variety
in age, occupation, and education, while ensuring equal pro-
portions of male and female participants. No incentive was
offered to participants. In the rare cases when a randomly
selected participant did not consent to take part in the survey,
the student made a second random selection from his or her
list.

Of the 486 participants who returned a fully completed
questionnaire (49% men, 51% women, mean age = 31, SD
= 12.6), 20% had completed graduate school or an equiva-
lent school form, 41% had the equivalent of an undergrad-
uate education, 25% graduated from high school only, and
the educational level of 14% was lower than high school.
The sample included a large proportion of students (37%),
but the remaining 63% came from practically all professional
perspectives (including 10% unemployed).

The conditional reasoning task consisted of six blocks
of three syllogisms. All blocks comprised one , one ,
and one  syllogism (presented in a different order in each
block). These syllogisms were embedded in a simple context
that was different for each block. Here is one example of a
complete block:

You are a doctor in a tropical country. According to
your experience, if a patient has malaria, he makes a
quick recovery.

Modus Tollens You observe the following situation:
A patient does not make a quick recovery.
Does the patient have malaria? (‘Yes’, ‘No’,
‘Maybe’)

Denying the Antecedent You observe the following
situation: A patient does not have malaria.
Does the patient make a quick recovery?
(‘Yes’, ‘No’, ‘Maybe’)

Affirming the Consequent You observe the follow-
ing situation: A patient makes a quick recovery.
Does the patient have malaria? (‘Yes’, ‘No’,
‘Maybe’)

The other five conditionals (all taken from Thompson, 2000)
were: ‘If there is a low pressure system, it will rain;’ ‘If
a restaurant sells liquor, it must have a liquor license;’ ‘If
someone has broken an item in the store, they must pay for
it;’ ‘If a company makes a big profit, the price of their shares
will go up;’ ‘If the content of the bottle is poisonous, it must
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be labelled “poison”.’ Participants filled out the question-
naire at their own pace and at their own place, under the su-
pervision of the student who recruited them. The survey was
conducted in French.

Methods of data analysis

Each response to each syllogism was coded ‘1’ when the
response was logically correct and ‘0’ when it was logically
incorrect. The responses of all individuals to all 18 questions
were analysed with the mixed Rasch model (Rost, 1990; von
Davier & Carstensen, in press) using the computer program
 (von Davier, 2001).

The mixed Rasch model is an extension of the Rasch
model (Rasch, 1960/1980) and the latent class model. As
a Rasch model, it assumes that the probability of a correct
response depends on the ability of an individual and the dif-
ficulty of an item. The ability of an individual is represented
by a person parameter θv that indicates the standing of an
individual on a latent continuous ability variable. The higher
the person parameter of an individual, the higher is the abil-
ity of that individual. The difficulty of an item is represented
by a difficulty parameter σi that indicates the standing of the
item on the latent ability variable. The value of the diffi-
culty parameter corresponds to a value on the latent ability
variable for which the probability to solve the item is .50.
The probability of a correct response is a non linear function
of the latent ability variable and depends on the difference
between the ability of an individual and the difficulty of an
item. If this difference is positive, the probability to solve the
item is higher than .50; if the difference is 0, the probability
equals .50; and if the difference is negative, the probability
is smaller than .50. Formally, the Rasch model is defined by
the following equation:

P(Xvi = 1) =
e(θv−σi)

1+ e(θv−σi)
,

where Xvi denotes the response variable of an individual v on
an item i, which takes the value 1 in case of a correct answer
and the value 0 in case of an incorrect answer.

The item characteristic curve has the same form for all
items and depends only on the difficulty parameter. The
Rasch model assumes that there is only one latent ability
variable that can explain the item responses (assumption of
unidimensionality). Furthermore, it assumes that all associ-
ations between the observed responses are explained by the
latent variable. When correcting for ability differences, there
should be no further associations between the items (assump-
tion of local independence). The aim of a Rasch analysis is
to test whether these assumptions are true and to estimate
the person parameters and the item difficulties. The Rasch
model is based on strong assumptions that might often be
violated. One strong assumption is that the item difficulties
do not differ between individuals and are the same for all
members of the population. That means that the ordering of
the items with respect to their difficulties do not differ be-
tween individuals. This assumption does not hold if there are
qualitative differences between individuals, that is, when the

relations of the item difficulties differ between individuals.
One item can be easier than another item for one individual
but more difficult for another individual. This is particularly
the case if individuals use different solution strategies, and
if the solutions of the items are prone to these differences in
solution strategies. In order to overcome this problem, the
Rasch model has been extended to the mixed Rasch model,
which is a combination of the Rasch model with the latent
class model.

As a latent class model, the mixed Rasch model assumes
that the population is not homogeneous but consists of G dif-
ferent nonoverlapping subpopulations that differ with respect
to the response probabilities of the items. Whereas the la-
tent class model assumes that there are no individual differ-
ences within a class with respect to the response probabil-
ities, the mixed Rasch model allows individual differences
within classes. In fact, the mixed Rasch model assumes that
within each latent class, a Rasch model holds, but that the
values of the parameters of the model can differ between
classes. This means that in each class, the probability of the
correct response depends on the ability of an individual and
the difficulty of an item, but that, for example, the item diffi-
culties can differ between classes. Formally, the mixed Rasch
model is defined by the following equation (Rost, 1990):

P(Xvi = 1|g) =
e(θvg−σig)

1+ e(θvg−σig) ,

where Xvi denotes the response variable of an individual v on
an item i, which takes the value 1 in case of a correct answer
and the value 0 in case of an incorrect answer.

According to this model, the probability P of a correct re-
sponse to an item i from an individual v belonging to a latent
class g depends on the difference between the ability θvg of
this individual and the difficulty parameter σig of that item
in class g. Hence, the item parameters can differ between
classes, representing structural differences in the response
process. The aim of a mixed Rasch analysis is to estimate
the person parameters and the item difficulties as well as the
class sizes πg and the latent person parameter probabilities.

The latent classes are disjoint and exhaustive. That means
that each individual must belong to one latent class and can
only belong to one latent class. Because of the disjoint, non-
overlapping classes, the probabilities πgs of the latent classes
(i.e., class sizes) must add up to one. It is not known before-
hand to which latent class an individual belongs—however,
for each individual, the probability of belonging to each of
the latent classes can be estimated based on the response pat-
tern of this individual and the parameters of the model. These
probabilities add up to one for each individual. Moreover, for
each individual an ability parameter is estimated for each of
the different classes. An individual is assigned to the latent
class for which her assignment probability is maximal. The
mean of all assignment probabilities of individuals assigned
to a class can be considered as the assignment reliability.

After having assigned individuals to the class with the
highest assignment probability, the class membership can be
considered as a nominal scaled variable, and can be related
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to other variables to analyse the way in which the classes dif-
fer with respect to other external variables. It is important to
note that the number of latent classes is not a parameter of the
model that can be estimated. In contrast, the fits of several
mixed Rasch models with different numbers of latent classes
must be compared to find the optimal number of classes. The
final number of latent classes is given by the number of latent
classes of the best-fitting mixed Rasch model.

There are several indicators for evaluating the fit of a
mixed Rasch model. As for many other models of categorical
data the observed frequencies of the observed response vec-
tors can be compared with the expected frequencies of these
vectors given by the mixed Rasch model. There are several
test statistics for comparing the expected and observed fre-
quencies (Read & Cressie, 1988), among which the χ2 dis-
tribution and the likelihood ratio test are the most widely
used. These test statistics are distributed according to a χ2

distribution when the expected frequencies of each possible
response pattern are at least 1 (Rost, 1990). Given that we
will be analyzing 18 binary items, there are 262,144 possi-
ble response patterns. Hence, we cannot trust that these test
statistic are really distributed according to a χ2 test in the
current application. In this case, an estimation of the p-value
can be calculated with the bootstrap method. However, as
von Davier (1997) has shown, the bootstrap methods only
works fine for bootstrapping the distribution of the Pearson
χ2 test and the Cressie-Read test, but not for others like the
likelihood ratio test. Therefore, we will only consider these
two test statistics for evaluating our model.

These fit coefficients can only be applied to test the fit
of a model with a given number of classes. They can not
be used to compare several mixed Rasch models that differ
in the number of classes. Furthermore, the likelihood ratio
test can not be applied to compare the fit of two mixed Rasch
models differing in the number of classes because one impor-
tant regularity condition is violated. If, for example, the fit of
a 3-class model is compared with the fit of a 2-class model,
the 2-class model is a special case of the 3-class model with
one class probability equal to 0. But if one parameter is fixed
to a boundary value of the parameter space, the likelihood
ratio test cannot be applied. However, in order to compare
the fit of different models, information criteria like Akaike’s
information criterion and the Bayesian information criterion
can be used. These criteria compare the general fit of a model
with the number of parameters estimated. Different models
can be compared according to their values on the information
criteria. The best model is the model with the lowest values
on the information criteria; this is the model that shows a
good fit with the lowest number of parameters. According to
Rost (2004), the Bayesian information criterion is preferable
to Akaike’s information criterion in the case of a large num-
ber of response patterns, and it will thus be used here. From a
theoretical point of view, we expect a 3-class model. In order
to evaluate the relative fit of this model, we will compare it
with a 1-class model (Rasch model), a 2-class model, and a
4-class model. We will use the Bayesian information crite-
rion coefficient to examine whether the 3-class model has a
better fit than the models with more or less classes. If this can

be confirmed, we will test the fit of the model with respect to
the Pearson χ2-test and the Cressie-Read test using bootstrap
analysis.

Results and discussion

The Bayesian information criterion () values for the
Rasch model and the mixed Rasch models with 2, 3, and
4 classes are 8506, 8467, 8465, and 8492, respectively. Ac-
cording to the , the model with three classes is the best
fitting model. However, its  value does not differ much
from the model with two latent classes. Hence, we will com-
pare the 3-class model with the 2-class model to learn more
about the differences between the two solutions, and whether
a third class is necessary. The model with four latent classes
shows a higher  value that indicates that a fourth class is
not necessary. Since the fourth class is rather small (9%),
and because we want to avoid spurious classes, we will con-
centrate on the 2- and 3-class solutions.

The 2-class model consists of a larger class (67%) and a
smaller class (33%). The class sizes of the 3-class solution
are 45%, 35%, and 20%. A careful comparison of the es-
timated difficulty parameters reveals that the profile of the
item parameters of the largest class of the 2-class solution is
very similar to the difficulty parameters in the second largest
class of the 3-class solution. Moreover, the profiles of the
item parameters in the smallest classes of the 2- and 3-class
solutions are very similar. The largest class of the 3-class so-
lution has no counterpart in the 2-class model. Because the
3-class model covers the structural differences that are found
in the 2-class model, and because the third class, that is not
present in the 2-class model, is the largest class, we decided
to present the 3-class model.

This decision is also supported by the bootstrap analysis.
The 3-class solution shows a better fit with respect to the p-
values of the bootstrap analyses: The p-values of the Pear-
son χ2 test and the Cressie-Read test for the 3-class model
are 0.09 and 0.03, respectively, showing that this model fits
the data rather well. The p-values of the Pearson χ2 test
and the Cressie-Read test for the 2-class model are 0.01 and
0.003, respectively, showing that the fit of the 2-class model
is worse than the fit of the 3-class model. These p-values
show that the 3-class model has to be rejected according to
an α of 0.05 and with respect to the Cressie-Read statistic
but not the Pearson test. The 3-class model does not have
to be rejected with respect to an α of 0.01. However, we
will not choose a strict α level for deciding for or against a
model. It is well known from latent variable modelling that
good models will be rejected when the sample size is large
because of a large power. In line with other latent variable ap-
proaches such as structural equation modelling we consider
the p-value as a measure of the goodness of fit of a model that
has to be considered as one of several fit coefficients. The
bootstrap p-values indicate a good fit of the 3-class model
and a less good fit of the 2-class model.

Table 2 displays the rates of correct responses to , ,
and  in the three classes. The graphical output of the model
is shown in Figure 1. The left panel of Figure 1 shows the
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Figure 1. Structural and quantitative differences between the three latent classes. The left panel shows how difficult each item is for
individuals the in three latent classes: The higher the parameter, the greater the difficulty. Items are arranged by blocks of , , and 
arguments that feature the same content. For simplicity reasons the , , and  tasks are only indicated for the first block. For all other
blocks only the  task is indicated, the sequence –– is always the same. The right panel shows the estimated raw score distributions
(and the corresponding estimates of the latent ability parameter, from −8 to +7) in the three classes.
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Table 2
Correct Response Rates (in % of Answers) to the Conditional
Arguments in the Three Latent Classes.

      Overall

 38 47 63 46
 33 43 60 41
 20 45 15 28

difficulty parameters of each item in each class: The diffi-
culty parameter of an item indicates the value on the latent
variable where the probability of a correct response equals
.50. The higher the value of a difficulty parameter the higher
is the ability needed to give a correct answer. Strong differ-
ences exist between the three groups, mainly in how sensitive
they are to argument type. The right panel of Figure 1 shows
the distribution of estimated raw scores in each latent class,
together with the corresponding estimation of latent score:
The (estimated) raw score of an individual corresponds to the
(estimated) number of logically correct answers given out of
18 answers total. The corresponding latent score is the raw
score corrected for measurement error. The latent score is a
monotonically increasing yet nonlinear function of the raw
score.

Class  (35% of all individuals) shows comparatively
small differences in the difficulty parameters of all syllo-
gisms. In particular, all arguments in a block featuring the
same conditional have roughly the same difficulty. Only for
the shop context (If someone has broken an item in the store,
they must pay for it) is  a bit easier than  and . For
the poison context (If the content of the bottle is poisonous,
it must be labelled ‘poison’),  is somewhat easier than the
two other syllogisms. The estimated raw score distribution
in this class covers the whole range of abilities. This class is
closely in line with the first group we expected on theoretical
grounds. Qualitatively speaking, reasoners in this class are
largely uninfluenced by argument or content. Quantitatively
speaking, this class comprises both individuals with very low
and very high raw scores (i.e., individuals who get most an-
swers wrong and individuals who get most answers right, re-
spectively), which is not the case for the other classes. All
these results strongly suggest that this class is, as expected, a
mix of pragmatic System1 reasoners and generative System2
reasoners.

Class  (45% of all individuals) is the class for which the
content of conditionals has the largest influence: The diffi-
culty parameters of the syllogisms show the greatest varia-
tions from one block to another. M is solved less easily than
 or  in the shop and malaria contexts, but the opposite is
true in the poison context. Furthermore,  and  are solved
especially easily in the malaria context. In quantitative terms,
raw scores in this class are symmetrically distributed and in
the lower half of the distribution. Overall, strong influence
of content rather than argument type plus low ability scores
suggest that this class corresponds to the hypothesized group
of semantic System1 reasoners.

Class  (20% of all individuals) is the class for which ar-
gument type has the strongest influence: Huge differences
are found in the difficulty of syllogisms featuring the same
content as a function of whether they are of the , , or 
type. A careful examination of these differences reveals that
there are comparatively small differences between  and 
syllogisms, but strong differences between  and the other
two syllogisms. In all cases,  syllogisms are more diffi-
cult than the two other syllogisms. This class is closely in
line with the proposed subpopulation of inhibitory System2
reasoners. In qualitative terms, individuals in this class find
it easy to block the incorrect answer to  and , and yet
extremely difficult to produce the correct answer to . In
quantitative terms, raw scores in this class are symmetrically
distributed and higher than raw scores observed in Class ,
which we have taken to correspond to semantic System1 rea-
soners.

General Discussion

Proponents of dual-process accounts of conditional rea-
soning have warned against an overly simplifying assump-
tion (Evans & Over, 2004; Klaczynski, 2001): One should
not think of logically valid answers to be solely the result
of System2 processes, and respectively, logically invalid an-
swers to be solely the result of System1 processes. In this ar-
ticle, we have pointed to another overly simplifying assump-
tion: Different mechanisms operate both within System1 and
System2, and these different mechanisms can very well yield
different answers to a given conditional syllogism. The case
of  is a striking illustration of this point. The determinate
answer to  is not produced by pragmatic System1, but it
is (sometimes) produced by semantic System1. Only then it
is no longer produced by inhibitory System2—but it comes
back full-force with generative System2.

Untangling the answers yielded by pragmatic and seman-
tic System1 (on the one hand), and inhibitory and generative
System2 (on the other hand), we have hypothesized the ex-
istence of four subgroups and three latent classes of which
one latent class comprises two subgroups. These four sub-
groups are differentiated both from a qualitative and a quan-
titative perspective resulting in a mixed Rasch model with
three classes and quantitative differences within classes.

These results clearly show that the content and context
effects which form the bulk of System1 processing need
not and ought not be considered as inextricably interwo-
ven. Pragmatic and semantic effects on conditional reason-
ing are separable. Some reasoners simply generate conclu-
sions from pragmatic implicatures, while others base their
answers on prior knowledge about the world; and these dif-
ferent response processes are revealed in a latent class analy-
sis. Similarly, results suggest that reasoners can inhibit Sys-
tem1 responses without having actively generated a System2
answer. In particular, some individuals, who cannot recruit
the abstract reductio strategy for , will nevertheless inhibit
content and context effects. This suggests that the conflict
between System1 and System2 outputs (Sloman, 1996) is
not always a prerequisite for System2 to override System1.
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Reasoners may attempt to block a System1 response even
though they have failed to generate an abstract, rule-based
System2 response.

Mental Models

We have argued that a fine-grained approach to System1
and System2 mechanisms is needed to advance our under-
standing of conditional reasoning. Yet, might our results be
explained without appealing to any dual-process approach
at all? That is, can the different subgroups of reasoners we
found be explained within a general, single-process account
of conditional reasoning such as mental model theory?3

From the perspective of the mental model theory of con-
ditional reasoning (Johnson-Laird & Byrne, 2002; see also
Bonnefon, 2004; Evans, Over, & Handley, 2005), conclu-
sions of conditional syllogisms are read from the set of
mental models that was generated during premise interpre-
tation. Each of our subgroups of reasoners is characterized
by its unique pattern of answers to conditional syllogisms;
as a consequence, a mental model account of our results
would assume that each subpopulation generated a distinct
set of mental models. More precisely, individuals we call in-
hibitory System2 reasoners would assign conditional state-
ments a ‘tautological’ interpretation (models pq, ¬pq, p¬q,
and ¬p¬q, where ¬p represents the negation of p), while in-
dividuals we call generative System2 reasoners would assign
conditional statements a ‘conditional’ interpretation (models
pq, ¬pq, and ¬p¬q). Semantic System1 reasoners would
not systematically assign conditional statements a given in-
terpretation, but would apply ‘pragmatic modulation’ to in-
corporate prior knowledge into their mental models. Finally,
pragmatic System1 reasoners would (paradoxically) appear
to eschew pragmatic modulation entirely, and systematically
represent conditional statements with the set of models pq,
p¬q, and ¬p¬q.

The main problem with this account relates to this last
subgroup. The sets of models pq, p¬q, and ¬p¬q has already
been identified by Johnson-Laird and Byrne (2002) as corre-
sponding to an ‘enabling’ interpretation of the conditional.
The enabling interpretation applies when the antecedent p is
necessary for the consequent q to occur, that is, when p is
the only enabling condition for q, or, in other terms, when q
cannot occur if p is not satisfied. Johnson-Laird and Byrne
(2002) give several examples of such conditionals: ‘If you
log on to the computer, then you may be able to receive e-
mail;’ ‘If oxygen is present, then there may be a fire;’ ‘If it’s
her book, then she is allowed to give it away.’ It seems highly
implausible, however, that a large subpopulation of reasoners
will almost systematically interpret any given conditional as
expressing such an enabling condition.

Conditional Probabilities

An integral component of the dual-process theory of con-
ditional reasoning (Evans & Over, 2004) is to consider con-
ditionals in terms of conditional probabilities. According to
this view, the degree of belief in the conclusion of a condi-
tional syllogism critically depends on the degree of belief in

the conditional statement ‘if p then q’—and this degree of
belief is adequately represented by the conditional probabil-
ity P(q|p) (Evans, Handley, & Over, 2003; Oberauer & Wil-
helm, 2003; Over, Hadjichristidis, Evans, Handley, & Slo-
man, in press). In parallel, other authors suggested that the
willingness to accept the conclusion of a conditional syllo-
gism depends on the conditional probability of the conclu-
sion given the minor premise (Liu, 2003; Liu, Lo, & Wu,
1996; Oaksford, Chater, & Larkin, 2000): E.g., the willing-
ness to endorse  would depend on P(¬q|¬p).

Although we have not addressed this aspect of dual-
process theories in this article, it can be readily integrated
to our proposal. Consider for example the case of semantic
System1 reasoners, who are essentially influenced by back-
ground knowledge related to the contents of the conditional.
This background knowledge impacts their degree of belief
in the conditional and the relevant conditional probabilities,
which in turn impact their willingness to endorse the con-
clusion of conditional syllogisms (Weidenfeld, Oberauer, &
Hörnig, 2005).

Only the semantic System1 subgroup is expected to be
largely influenced by the contents of the conditional. Does
that mean that the conditional probability P(q|p) will not play
a role in the reasoning of other subgroups? Not necessarily.
Indeed, the probability P(q|p) depends on other factors than
just the semantic contents of p and q. In particular, pragmatic
aspects of the situation, such as who asserted the conditional,
can impact P(q|p) and the subsequent willingness to endorse
the conclusion of conditional syllogisms. Consider one of
the statement we used in our study: ‘If a patient has malaria,
he makes a quick recovery.’ As shown in Stevenson and Over
(2001), the conditional probability attached to this statement
is higher when it is asserted by an expert doctor than when
it is asserted by a medical student. Pragmatic System1 rea-
soners, even though they might be insensitive to the exact se-
mantic contents of the conditional, are likely to be influenced
by such contextual factors.

Conclusion

We hope to have made a convincing case for our ap-
proach, which mixes fine-grained dual-process theorization
with a mixed Rash model methodology. We are, neverthe-
less, aware that we have so far only addressed one aspect of
conditional reasoning, that is, conditional syllogisms. We
plan to extend this approach to the selection task and the
truth-table task—with mixed expectations. We believe, along
with Thompson (2000), that most of the interpretative pro-
cesses that influence conditional reasoning are task specific;
and thus, that subpopulations of reasoners on a conditional
reasoning task will not readily map onto, for example, sub-
populations of reasoners on the selection task. On the other
hand, Newstead et al. (2004) report some association be-
tween general intelligence, the tendency to resist  and ,

3 Simply because we qualify mental model theory as a single-
process account does not preclude the possibility to include it as the
analytical component within a dual-process account (Verschueren
et al., in press).
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and the consistency with which one gives a normative answer
to the indicative selection task. Moreover, Evans et al. (2006)
report promising results relating cognitive sophistication, re-
sponses to conditional syllogisms, and responses to the truth-
table task. Only time (in the form of future research) will tell
whether these associations are really the tip of the psycho-
metric iceberg.
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